...
首页> 外文期刊>Global change biology >Spatial and body-size dependent response of marine pelagic communities to projected global climate change
【24h】

Spatial and body-size dependent response of marine pelagic communities to projected global climate change

机译:海洋中上层群落对预计的全球气候变化的空间和体型依赖性反应

获取原文
获取原文并翻译 | 示例

摘要

Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (similar to+3 degrees C), a de-oxygenation of the ocean's interior (similar to-3%) and a decrease in total marine net primary production (similar to-8%) under the business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES) - ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be more resilient to climate change than large ones.
机译:温度,氧气和食物的供应量直接影响海洋生物。气候模型预测,全球海洋表面将变暖(约+3摄氏度),海洋内部将被除氧(约-3%),海洋总净初级生产力将下降(约8%)。照常营业”的气候变化情景(RCP8.5)。我们使用了上一代IPSL-CM地球系统模型的物理输出所强制的耦合生物地球化学(PISCES)-生态系统(APECOSM)模型,估计了这些变化对生物群落的影响。 APECOSM模型是一种大小结构化的生物能模型,在多个环境因素的影响下,该模型模拟了三个互动中上层群落(地上,中生和迁徙)的3D动态分布。 PISCES-APECOSM模型在历史强迫下从1850年运行到2100年,随后是RCP8.5。我们的RCP8.5模拟突出显示了模拟中上层群落的空间分布,生物量和最大体型的重大变化。在本世纪中,高纬度地区的生物量和最大体重增加,反映了海洋生物对新的适宜环境做出反应的能力。在低纬度和中纬度,生物量和最大体型会大大降低。在这些地区,由于粮食供应​​有限和下降,大型生物无法维持其高代谢需求。这种资源减少增加了竞争,并改变了三个社区之间和内部的生物量分布:三个社区中小型生物的比例增加,并且最初占较高比例的小型生物的移民社区受到青睐。小型生物体的更大复原力在于其在能量供应减少的情况下满足其代谢需求的能力,并且由于大型生物体的下降而释放了捕食压力,这进一步受到青睐。这些结果表明,小型的生物体可能比大型的生物体更能抵抗气候变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号