...
首页> 外文期刊>Global change biology >Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions.
【24h】

Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions.

机译:人为改变海水缓冲能力与自然礁石代谢相结合会导致未来极端的珊瑚礁CO 2 条件。

获取原文
获取原文并翻译 | 示例

摘要

Ocean acidification, via an anthropogenic increase in seawater carbon dioxide (CO2), is potentially a major threat to coral reefs and other marine ecosystems. However, our understanding of how natural short-term diurnal CO2 variability in coral reefs influences longer term anthropogenic ocean acidification remains unclear. Here, we combine observed natural carbonate chemistry variability with future carbonate chemistry predictions for a coral reef flat in the Great Barrier Reef based on the RCP8.5 CO2 emissions scenario. Rather than observing a linear increase in reef flat partial pressure of CO2 (pCO2) in concert with rising atmospheric concentrations, the inclusion of in situ diurnal variability results in a highly nonlinear threefold amplification of the pCO2 signal by the end of the century. This significant nonlinear amplification of diurnal pCO2 variability occurs as a result of combining natural diurnal biological CO2 metabolism with long-term decreases in seawater buffer capacity, which occurs via increasing anthropogenic CO2 absorption by the ocean. Under the same benthic community composition, the amplification in the variability in pCO2 is likely to lead to exposure to mean maximum daily pCO2 levels of ca. 2100 micro atm, with corrosive conditions with respect to aragonite by end-century at our study site. Minimum pCO2 levels will become lower relative to the mean offshore value (ca. threefold increase in the difference between offshore and minimum reef flat pCO2) by end-century, leading to a further increase in the pCO2 range that organisms are exposed to. The biological consequences of short-term exposure to these extreme CO2 conditions, coupled with elevated long-term mean CO2 conditions are currently unknown and future laboratory experiments will need to incorporate natural variability to test this. The amplification of pCO2 that we describe here is not unique to our study location, but will occur in all shallow coastal environments where high biological productivity drives large natural variability in carbonate chemistry.
机译:人为增加的海水二氧化碳(CO 2 )引起的海洋酸化可能对珊瑚礁和其他海洋生态系统构成重大威胁。但是,我们对于珊瑚礁中自然短期CO 2 的自然短期变化如何影响长期人为海洋酸化的认识尚不清楚。在此,我们根据RCP8.5 CO 2 排放情景,将观察到的天然碳酸盐化学变异性与未来大堡礁珊瑚礁碳酸盐化学预测相结合。与其观察到CO 2 (pCO 2 )的礁石平坦分压随大气浓度的升高呈线性增加,不如原地昼夜变化会导致高度到本世纪末,pCO 2 信号的非线性三倍放大。昼夜pCO 2 变异的显着非线性放大是由于自然昼间生物CO 2 的新陈代谢与海水缓冲能力的长期降低(通过增加人为因素而发生)相结合的结果海洋中CO 2 的吸收。在相同的底栖生物群落组成下,pCO 2 变异性的放大可能导致暴露于大约每天平均最大pCO 2 水平。 2100微米大气压,到本世纪末在我们的研究地点对文石具有腐蚀条件。到本世纪末,最低pCO 2 的水平相对于平均离岸价值将降低(离岸和最小礁石平坦pCO 2 的差异增加三倍),导致进一步增加了生物接触的pCO 2 范围。短期暴露于这些极端CO 2 条件下的生物学后果,以及长期平均CO 2 条件升高,目前尚不清楚,未来的实验室实验将需要纳入自然变异性对此进行检验。我们在此描述的pCO 2 的扩增并非我们的研究地点所独有,而是会在所有浅水沿海环境中发生,在这些环境中,高生物生产力驱动着碳酸盐化学的大自然变化。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号