...
首页> 外文期刊>Global change biology >Ocean acidification and warming scenarios increase microbioerosion of coral skeletons
【24h】

Ocean acidification and warming scenarios increase microbioerosion of coral skeletons

机译:海洋酸化和变暖情景增加了珊瑚骨骼的微生物侵蚀

获取原文
获取原文并翻译 | 示例

摘要

Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef-building corals, Porites cylindrica and Isopora cuneata, to present-day (Control: 400 atm 24 degrees C) and future pCO2temperature scenarios projected for the end of the century (Medium: +230 atm +2 degrees C; High: +610 atm +4 degrees C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., aragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.
机译:碳酸盐溶解的生物调节作用是作用于珊瑚礁生态系统的破坏力的基本组成部分。尽管海洋酸化会增加碳酸盐基质的溶解,但是海洋酸化和变暖对珊瑚骨骼的微生物侵蚀的综合影响仍然未知。在这里,我们将珊瑚礁的珊瑚骨骼,Porites cylindrica和Isopora cuneata的骨骼暴露于当今(控制:400 atm,24摄氏度),并预测了本世纪末的未来pCO2温度情景(中:+230 atm +2摄氏度;最高:+610大气压+4摄氏度)。最初的次氯酸钠孵育还使骨骼处于永久性黑暗中,未经次氯酸钠孵育的自然光照也使骨骼处于黑暗状态,以将酸性海水(即文石<1)的环境影响与光合微孔虫的生物学作用隔离开来。我们的结果表明骨骼溶解主要是由光合作用的微孔驱动的,因为在黑暗中保存的样品不会脱钙。相反,在较高的pCO2温度情况下,暴露在光下的骨骼的溶解度增加,相对于对照,在较高的处理下,圆柱假单胞菌每月经历的溶解率(89%)比楔形假单胞菌(46%)更高。未来的pCO2温度情景对内生群落结构的影响仅在圆柱假单胞菌中被确定,并且主要与绿藻Ostreobium spp的丰富度有关。在升高的pCO2温度下,骨骼溶解的增强也与内生生物量的增加和呼吸作用有关。我们的结果表明,未来对海洋酸化和变暖的预测将导致微生物侵蚀的速率增加。但是,生物侵蚀反应的幅度可能取决于珊瑚骨骼的结构特性,这对于在温暖和酸性更高的海洋下珊瑚礁碳酸盐的损失有一系列影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号