首页> 外文期刊>Global change biology >Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia.
【24h】

Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia.

机译:预测西伯利亚东北部多年冻土融化后的长期碳矿化和微量气体产生。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The currently observed Arctic warming will increase permafrost degradation followed by mineralization of formerly frozen organic matter to carbon dioxide (CO2) and methane (CH4). Despite increasing awareness of permafrost carbon vulnerability, the potential long-term formation of trace gases from thawing permafrost remains unclear. The objective of the current study is to quantify the potential long-term release of trace gases from permafrost organic matter. Therefore, Holocene and Pleistocene permafrost deposits were sampled in the Lena River Delta, Northeast Siberia. The sampled permafrost contained between 0.6% and 12.4% organic carbon. CO2 and CH4 production was measured for 1200 days in aerobic and anaerobic incubations at 4 degrees C. The derived fluxes were used to estimate parameters of a two pool carbon degradation model. Total CO2 production was similar in Holocene permafrost (1.3+or-0.8 mg CO2-C gdw-1 aerobically, 0.25+or-0.13 mg CO2-C gdw-1 anaerobically) as in 34 000-42 000-year-old Pleistocene permafrost (1.6+or-1.2 mg CO2-C gdw-1 aerobically, 0.26+or-0.10 mg CO2-C gdw-1 anaerobically). The main predictor for carbon mineralization was the content of organic matter. Anaerobic conditions strongly reduced carbon mineralization since only 25% of aerobically mineralized carbon was released as CO2 and CH4 in the absence of oxygen. CH4 production was low or absent in most of the Pleistocene permafrost and always started after a significant delay. After 1200 days on average 3.1% of initial carbon was mineralized to CO2 under aerobic conditions while without oxygen 0.55% were released as CO2 and 0.28% as CH4. The calibrated carbon degradation model predicted cumulative CO2 production over a period of 100 years accounting for 15.1% (aerobic) and 1.8% (anaerobic) of initial organic carbon, which is significantly less than recent estimates. The multiyear time series from the incubation experiments helps to more reliably constrain projections of future trace gas fluxes from thawing permafrost landscapes.
机译:当前观察到的北极变暖将增加永久冻土的降解,然后将原先冷冻的有机物矿化成二氧化碳(CO 2 )和甲烷(CH 4 )。尽管人们对多年冻土碳脆弱性的认识日益提高,但仍不清楚融化多年冻土可能长期形成痕量气体的可能性。当前研究的目的是量化多年冻土有机物中微量气体的潜在长期释放。因此,在西伯利亚东北部的莉娜河三角洲取样了全新世和更新世的多年冻土沉积物。取样的永久冻土含有0.6%至12.4%的有机碳。在4摄氏度的有氧和厌氧条件下,测定1200天的CO 2 和CH 4 产量。导出的通量用于估算两库碳降解模型的参数。全新世多年冻土中CO 2 的总产量相似(需氧量为1.3 + or-0.8 mg CO 2 -C gdw -1 0.25 + or- 0.13 mg CO 2 -C gdw -1 厌氧)与34 000-42 000岁的更新世多年冻土(1.6 + or-1.2 mg CO 2 -C gdw -1 好氧,0.26 +或-0.10 mg CO 2 -C gdw -1 厌氧。碳矿化的主要预测因素是有机质含量。在无氧条件下,只有25%的需氧矿化碳以CO 2 和CH 4 的形式释放,从而大大降低了碳的矿化程度。在大多数更新世多年冻土中,CH 4 的产量较低或不存在,并且总是在显着延迟后才开始。 1200天后,在有氧条件下平均3.1%的初始碳矿化为CO 2 ,而在没有氧气的情况下,0.55%的CO 2 释放和0.28%的CH 4 。校准后的碳降解模型预测了100年内的累积CO 2 产量,分别占初始有机碳的15.1%(有氧)和1.8%(厌氧),远低于最近的估计。孵化实验的多年时间序列有助于更可靠地限制融化永冻土景观的未来痕量气体通量的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号