...
首页> 外文期刊>Global change biology >The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study.
【24h】

The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study.

机译:土壤细胞外酶对温度的Michaelis-Menten动力学:跨纬度研究。

获取原文
获取原文并翻译 | 示例

摘要

Decomposition of soil organic matter (SOM) is mediated by microbial extracellular hydrolytic enzymes (EHEs). Thus, given the large amount of carbon (C) stored as SOM, it is imperative to understand how microbial EHEs will respond to global change (and warming in particular) to better predict the links between SOM and the global C cycle. Here, we measured the Michaelis-Menten kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of five hydrolytic enzymes involved in SOM degradation (cellobiohydrolase, beta -glucosidase, beta -xylosidase, alpha -glucosidase, and N-acetyl- beta -D-glucosaminidase) in five sites spanning a boreal forest to a tropical rainforest. We tested the specific hypothesis that enzymes from higher latitudes would show greater temperature sensitivities than those from lower latitudes. We then used our data to parameterize a mathematical model to test the relative roles of Vmax and Km temperature sensitivities in SOM decomposition. We found that both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.53 to 2.27 for Vmax and 0.90 to 1.57 for Km. The Q10 values for the Km of the cellulose-degrading enzyme beta -glucosidase showed a significant (P=0.004) negative relationship with mean annual temperature, indicating that enzymes from cooler climates can indeed be more sensitive to temperature. Our model showed that Km temperature sensitivity can offset SOM losses due to Vmax temperature sensitivity, but the offset depends on the size of the SOM pool and the magnitude of Vmax. Overall, our results suggest that there is a local adaptation of microbial EHE kinetics to temperature and that this should be taken into account when making predictions about the responses of C cycling to global change.
机译:土壤有机物(SOM)的分解是由微生物细胞外水解酶(EHE)介导的。因此,鉴于大量的碳(C)作为SOM储存,必须了解微生物EHE如何应对全球变化(尤其是变暖),以更好地预测SOM与全球C循环之间的联系。在这里,我们测量了Michaelis-Menten动力学[最大速度( V max )和半饱和常数( K < sub> m )]参与SOM降解的5种水解酶(纤维二糖水解酶,β-葡萄糖苷酶,β-木糖苷酶,α-葡萄糖苷酶和 N -乙酰基-β- D-葡萄糖苷酶)分布在从北方森林到热带雨林的五个地点。我们测试了特定的假设,即来自高纬度的酶比来自低纬度的酶对温度的敏感性更高。然后,我们使用我们的数据对数学模型进行参数化,以测试 V max 和 K m 的相对作用sub> SOM分解中的温度敏感性。我们发现 V max 和 K m 都对温度敏感,其中<对于 V max ,i> Q 10 值范围从1.53至2.27,对于 K 范围从0.90至1.57 > m 。纤维素降解酶β的 K m 的 Q 10 值-葡糖苷酶与年平均温度呈显着负相关( P = 0.004),这表明来自凉爽气候的酶的确对温度更敏感。我们的模型表明, K m 温度敏感性可以抵消由于 V max 温度敏感度,但偏移量取决于SOM池的大小和 V max 的大小。总体而言,我们的结果表明,微生物EHE动力学对温度具有局部适应性,因此在预测C循环对全球变化的响应时应考虑到这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号