首页> 外文期刊>Global change biology >Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils
【24h】

Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

机译:对全球重要碳库的分子研究:阿拉斯加土壤中永久冻土保护的碳

获取原文
获取原文并翻译 | 示例
           

摘要

The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5 degrees C were measured to calculate temperature response quotients (Q(10)). The Q(10) was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q(10) values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region.
机译:北方森林中多年冻土中永久冻土中所含的碳(C)的命运是当前和未来碳循环的重要考虑因素。目前,对于永冻土的微生物学或化学性质知之甚少,一旦土壤融化就会影响其分解。我们检验了以下假设:与活性层土壤相比,多年冻土中微生物的低丰度和低活性限制了分解速率。我们研究了费尔班克斯,AK,育空河和北极圈附近的活性层和多年冻土。将土壤在有氧和厌氧条件下在实验室中孵育。测量-5和5摄氏度的气体通量,以计算温度响应商(Q(10))。与活动层土壤(平均7.5)相比,多年冻土中的Q(10)较低(平均2.7)。土壤养分,可浸出的可溶性有机碳(DOC)的质量和数量以及土壤的核磁共振波谱表明,多年冻土中的有机物与表层土壤一样不稳定,甚至更不稳定。与活性层土壤相比,多年冻土土壤中分解所涉及的微生物丰度(真菌,细菌和亚组:产甲烷菌和担子菌)和外切酶活性较低,这与活性层土壤相比,加上化学数据,均支持降低的Q(10)值。 CH4通量与甲烷源丰度相关,CH4的最高产量来自活性层土壤。这些结果表明,多年冻土具有较高的固有可分解性,但低的微生物丰度和活性降低了碳通量的温度敏感性。尽管存在这些固有的局限性,但永久冻土中的单位土壤碳呼吸要高于活性层土壤,这表明分解和异养呼吸可能有助于对该生态区变暖的积极反馈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号