首页> 外文期刊>Global change biology >Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils
【24h】

Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils

机译:干旱与氮肥交互作用对草地土壤甲烷同化空间分布的影响。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Soil methanotrophic bacteria constitute the only globally relevant biological sink for atmospheric methane (CH4). Nitrogen (N) fertilizers as well as soil moisture regime affect the activity of these organisms, but the mechanisms involved are not well understood to date. In particular, virtually nothing is known about the spatial distribution of soil methanotrophs within soil structure and how this regulates CH4 fluxes at the ecosystem scale. We studied the spatial distribution of CH4 assimilation and its response to a factorial drought x N fertilizer treatment in a 3-year experiment replicated in two grasslands differing in management intensity. Intact soil cores were labelled with (CH4)-C-14 and methanotrophic activity mapped at a resolution of similar to 100 mm using an autoradiographic technique. Under drought, the main zone of CH4 assimilation shifted down the soil profile. Ammonium nitrate (NH4NO3) and cattle urine reduced CH4 assimilation in the top soil, but only when applied under drought, presumably because NH4+ from fertilizers was not removed by plant uptake and nitrification under these conditions. Ecosystem-level CH4 fluxes measured in the field did show no or only very small inhibitory effects, suggesting that deeper soil layers fully compensated for the reduction in top soil CH4 assimilation. Our results indicate that the ecosystem-level CH4 sink cannot be inferred from measurements of soil samples that do not reflect the spatial organization of soils (e. g. stratification of organisms, processes, and mechanisms). The autoradiographic technique we have developed is suited to study methanotrophic activity in a relevant spatial context and does not rely on the genetic identity of the soil bacterial communities involved, thus ideally complementing DNA-based approaches.
机译:土壤甲烷营养细菌是大气甲烷(CH4)的唯一全球相关的生物汇。氮(N)肥料以及土壤水分状况会影响这些生物的活动,但迄今为止所涉及的机理尚不清楚。特别是,关于土壤甲烷在土壤中的空间分布及其在生态系统规模上如何调节CH4通量的知识几乎一无所知。我们在管理强度不同的两个草地上进行的为期3年的实验中研究了CH4同化的空间分布及其对因子干旱x N肥料处理的响应。用(CH4)-C-14标记完整的土壤核心,并使用放射自显影技术绘制甲烷营养活性图,分辨率约为100 mm。在干旱下,CH4同化的主要区域向土壤剖面下移。硝酸铵(NH4NO3)和牛尿减少了表层土壤中的CH4同化,但仅在干旱条件下施用时,大概是因为在这些条件下无法从植物吸收和硝化作用中除去肥料中的NH4 +。在田间测得的生态系统水平的CH4通量没有显示出抑制作用,或仅显示了很小的抑制作用,这表明较深的土壤层完全补偿了表层土壤CH4同化的减少。我们的结果表明,不能从不能反映土壤的空间组织的土壤样品的测量值(例如,生物体,过程和机制的分层)中推断出生态系统水平的CH4汇。我们开发的放射自显影技术适合在相关的空间环境中研究甲烷营养活性,并且不依赖于所涉及的土壤细菌群落的遗传特性,因此可以理想地补充基于DNA的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号