...
首页> 外文期刊>Global change biology >Feedback of carbon and nitrogen cycles enhances carbon sequestration in the terrestrial biosphere.
【24h】

Feedback of carbon and nitrogen cycles enhances carbon sequestration in the terrestrial biosphere.

机译:碳和氮循环的反馈增强了陆地生物圈中的碳固存。

获取原文
获取原文并翻译 | 示例

摘要

The efforts to explain the 'missing sink' for anthropogenic carbon dioxide (CO2) have included in recent years the role of nitrogen as an important constraint for biospheric carbon fluxes. We used the Nitrogen Carbon Interaction Model (NCIM) to investigate patterns of carbon and nitrogen storage in different compartments of the terrestrial biosphere as a consequence of a rising atmospheric CO2 concentration, in combination with varying levels of nitrogen availability. This model has separate but closely coupled carbon and nitrogen cycles with a focus on soil processes and soil-plant interactions, including an active compartment of soil microorganisms decomposing litter residues and competing with plants for available nitrogen. Biological nitrogen fixation is represented as a function of vegetation nitrogen demand. The model was validated against several global datasets of soil and vegetation carbon and nitrogen pools. Five model experiments were carried out for the modeling periods 1860-2002 and 2002-2100. In these experiments we varied the nitrogen availability using different combinations of biological nitrogen fixation, denitrification, leaching of soluble nitrogen compounds with constant or rising atmospheric CO2 concentrations. Oversupply with nitrogen, in an experiment with nitrogen fixation, but no nitrogen losses, together with constant atmospheric CO2, led to some carbon sequestration in organismic pools, which was nearly compensated by losses of C from soil organic carbon pools. Rising atmospheric CO2 always led to carbon sequestration in the biosphere. Considering an open nitrogen cycle including dynamic nitrogen fixation, and nitrogen losses from denitrification and leaching, the carbon sequestration in the biosphere is of a magnitude comparable to current observation based estimates of the 'missing sink.' A fertilization feedback between the carbon and nitrogen cycles occurred in this experiment, which was much stronger than the sum of separate influences of high nitrogen supply and rising atmospheric CO2. The demand-driven biological nitrogen fixation was mainly responsible for this result. For the modeling period 2002-2100, NCIM predicts continued carbon sequestration in the low range of previously published estimates, combined with a plausible rate of CO2-driven biological nitrogen fixation and substantial redistribution of nitrogen from soil to plant pools.
机译:近年来,解释人为二氧化碳(CO 2 )的“漏失”的努力包括将氮作为生物圈碳通量的重要限制因素。我们使用氮碳相互作用模型(NCIM)来研究由于大气中CO 2 浓度升高以及氮含量不同而导致的陆地生物圈不同隔室中碳和氮的存储模式可用性。该模型具有独立但紧密耦合的碳和氮循环,重点是土壤过程和土壤与植物之间的相互作用,包括一个土壤微生物的活跃区室,该区室分解垃圾残留物并与植物竞争可用的氮。生物固氮表现为植被氮需求的函数。该模型已针对土壤和植被碳氮池的几个全球数据集进行了验证。在建模期间1860-2002和2002-2100进行了五个模型实验。在这些实验中,我们通过生物固氮,反硝化,大气中CO 2 浓度不断升高的可溶性氮化合物的不同组合来改变氮的有效性。在固氮实验中,氮的供过于求,但是没有氮的损失,加上恒定的大气CO 2 导致了有机池中的碳固存,这几乎被土壤有机碳的损失所补偿。碳池。大气中CO 2 的升高总是导致生物圈中的碳固存。考虑到一个开放的氮循环,包括动态固氮,以及反硝化和浸出产生的氮损失,生物圈中的碳固存量可与当前基于观测的“漏失”估算相媲美。在该实验中,发生了碳循环和氮循环之间的施肥反馈,这要比高氮供应和大气CO 2 升高的单独影响之和强得多。需求驱动的生物固氮是造成这一结果的主要原因。在2002年至2100年的建模期间,NCIM预测碳封存将在先前发表的估算值的低范围内进行,并结合由CO 2 驱动的生物固氮的合理速率以及氮从土壤到土壤的大量重新分配植物池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号