首页> 外文期刊>Global change biology >Reductions in daily soil temperature variability increase soil microbial biomass C and decrease soil N availability in the Chihuahuan Desert: potential implications for ecosystem C and N fluxes.
【24h】

Reductions in daily soil temperature variability increase soil microbial biomass C and decrease soil N availability in the Chihuahuan Desert: potential implications for ecosystem C and N fluxes.

机译:每日土壤温度变异性的降低增加了奇瓦瓦沙漠中土壤微生物的生物量碳并降低了土壤氮的有效性:对生态系统碳和氮通量的潜在影响。

获取原文
获取原文并翻译 | 示例
       

摘要

Maximum and minimum soil temperatures affect belowground processes. In the past 50 years in arid regions, measured reductions in the daily temperature range of air (DTRair) most likely generated similar reductions in the unmeasured daily temperature range of soil (DTRsoil). However, the role of DTRsoil in regulating microbial and plant processes has not been well described. We experimentally reduced DTRsoil in the Chihuahuan Desert at Big Bend National Park over 3 years. We used shade cloth that effectively decreased DTRsoil by decreasing daily maximum temperature and increasing nighttime minimum temperature. A reduction in DTRsoil generated on average a twofold increase in soil microbial biomass carbon, a 42% increase in soil CO2 efflux and a 16% reduction in soil NO3--N availability; soil available NH4+-N was reduced by 18% in the third year only. Reductions in DTRsoil increased soil moisture up to 15% a few days after a substantial rainfall. Increased soil moisture contributed to higher soil CO2 efflux, but not microbial biomass carbon, which was significantly correlated with DTRsoil. Net photosynthetic rates at saturating light (Asat) in Larrea tridentata were not affected by reductions in DTRsoil over the 3 year period. Arid ecosystems may become greater sources of C to the atmosphere with reduced DTRsoil, resulting in a positive feedback to rising global temperatures, if increased C loss is not eventually balanced by increased C uptake. Ultimately, ecosystem models of N and C fluxes will need to account for these temperature-driven processes.
机译:最高和最低土壤温度会影响地下过程。在过去的50年中,在干旱地区,每天测得的空气日温度范围(DTR air )的降低很可能在未测得的土壤日温度范围(DTR soil )。然而,DTR <土壤>在调节微生物和植物过程中的作用尚未得到很好的描述。在3年的时间里,我们在大弯国家公园的奇瓦瓦沙漠实验性地减少了DTR soil 。我们使用了遮阳布,该遮阳布通过降低每日最高温度和增加夜间最低温度有效地降低了DTR soil 。 DTR soil 的减少平均使土壤微生物生物量碳增加两倍,土壤CO 2 外排增加42%,土壤NO 减少16% > 3 - -N个可用性;仅第三年土壤速效NH 4 + -N减少了18%。大量降雨后几天,DTR soil 的减少使土壤水分增加了15%。土壤水分的增加促进了土壤CO 2 的外排,但微生物生物量碳没有增加,这与DTR 土壤显着相关。 Larrea tridentata 中饱和光( A sat )的净光合速率不受DTR soil 降低超过3年期限。干旱的生态系统可能会通过减少DTR 土壤成为大气中更多的C碳源,如果最终无法通过增加C吸收来平衡增加的C损失,则会对全球气温升高产生积极的反馈。最终,氮和碳通量的生态系统模型将需要考虑这些温度驱动的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号