首页> 外文期刊>Global change biology >Forest fine-root production and nitrogen use under elevated CO: contrasting responses in evergreen and deciduous trees explained by a common principle
【24h】

Forest fine-root production and nitrogen use under elevated CO: contrasting responses in evergreen and deciduous trees explained by a common principle

机译:CO浓度升高时森林细根生产和氮素利用:通过共同原理解释常绿和落叶乔木的响应差异

获取原文
获取原文并翻译 | 示例
       

摘要

Despite the importance of nitrogen (N) limitation of forest carbon (C) sequestration at rising atmospheric CO concentration, the mechanisms responsible are not well understood. To elucidate the interactive effects of elevated CO (eCO) and soil N availability on forest productivity and C allocation, we hypothesized that (1) trees maximize fitness by allocating N and C to maximize their net growth and (2) that N uptake is controlled by soil N availability and root exploration for soil N. We tested this model using data collected in Free-Air CO Enrichment sites dominated by evergreen (Pinus taeda; Duke Forest) and deciduous [Liquidambar styraciflua; Oak Ridge National Laboratory (ORNL)] trees. The model explained 80-95% of variation in productivity and N-uptake data among eCO, N fertilization and control treatments over 6 years. The model explains why fine-root production increased, and why N uptake increased despite reduced soil N availability under eCO at ORNL and Duke. In agreement with observations at other sites, the model predicts that soil N availability reduced below a critical level diminishes all eCO responses. At Duke, a negative feedback between reduced soil N availability and N uptake prevented progressive reduction in soil N availability at eCO. At ORNL, soil N availability progressively decreased because it did not trigger reductions in N uptake; N uptake was maintained at ORNL through a large increase in the production of fast turnover fine roots. This implies that species with fast root turnover could be more prone to progressive N limitation of carbon sequestration in woody biomass than species with slow root turnover, such as evergreens. However, longer term data are necessary for a thorough evaluation of this hypothesis. The success of the model suggests that the principle of maximization of net growth to control growth and allocation could serve as a basis for simplification and generalization of larger scale forest and ecosystem models, for example by removing the need to specify parameters for relative foliage/stem/root allocation.
机译:尽管在大气CO浓度升高时限制氮(N)限制森林碳(C)的固存,但尚不清楚引起这种作用的机理。为了阐明升高的CO(eCO)和土壤氮素供应对森林生产力和C分配的交互作用,我们假设(1)树木通过分配N和C以最大化其净生长来最大化适应性,以及(2)控制N的吸收通过土壤氮的有效性和土壤氮的根系探索。我们使用在常绿(Pinus taeda;杜克森林)和落叶(Liquidambar styraciflua;橡树岭国家实验室(ORNL)]树。该模型解释了6年间eCO,氮肥和对照处理之间生产力和氮素吸收数据的80-95%变化。该模型解释了为什么在ORNL和Duke的eCO下土壤有效氮含量降低,细根产量增加了,为什么氮吸收增加了。与其他站点的观测结果一致,该模型预测土壤氮的有效利用率降低到临界水平以下会减少所有eCO响应。在杜克大学,减少的土壤氮素利用率与氮素吸收之间的负反馈阻止了eCO上土壤氮素利用率的逐步降低。在ORNL,土壤氮的有效利用逐渐减少,因为它不会触发氮吸收的减少。通过快速更新的细根产量的大量增加,ORNL保持了氮素的吸收。这表明,具有快速根部周转的物种比具有缓慢根部周转的物种(例如常绿树)更容易受到木质生物量中碳固存的渐进性N限制。但是,对于此假设的全面评估,需要长期数据。该模型的成功表明,最大化净增长以控制增长和分配的原则可以作为简化和推广大规模森林和生态系统模型的基础,例如,无需指定相对叶/茎相对参数的需求/ root分配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号