首页> 外文期刊>Global change biology >Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)
【24h】

Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)

机译:使用五个动态全球植被模型(DGVM)评估陆地碳循环,未来植物地理和气候-碳循环反馈

获取原文
获取原文并翻译 | 示例
       

摘要

This study tests the ability of five Dynamic Global Vegetation Models (DGVMs), forced with observed climatology and atmospheric CO, to model the contemporary global carbon cycle. The DGVMs are also coupled to a fast 'climate analogue model', based on the Hadley Centre General Circulation Model (GCM), and run into the future for four Special Report Emission Scenarios (SRES): A1FI, A2, B1, B2. Results show that all DGVMs are consistent with the contemporary global land carbon budget. Under the more extreme projections of future environmental change, the responses of the DGVMs diverge markedly. In particular, large uncertainties are associated with the response of tropical vegetation to drought and boreal ecosystems to elevated temperatures and changing soil moisture status. The DGVMs show more divergence in their response to regional changes in climate than to increases in atmospheric CO content. All models simulate a release of land carbon in response to climate, when physiological effects of elevated atmospheric CO on plant production are not considered, implying a positive terrestrial climate-carbon cycle feedback. All DGVMs simulate a reduction in global net primary production (NPP) and a decrease in soil residence time in the tropics and extra-tropics in response to future climate. When both counteracting effects of climate and atmospheric CO on ecosystem function are considered, all the DGVMs simulate cumulative net land carbon uptake over the 21st century for the four SRES emission scenarios. However, for the most extreme A1FI emissions scenario, three out of five DGVMs simulate an annual net source of CO from the land to the atmosphere in the final decades of the 21st century. For this scenario, cumulative land uptake differs by 494 Pg C among DGVMs over the 21st century. This uncertainty is equivalent to over 50 years of anthropogenic emissions at current levels.
机译:这项研究测试了五个动态全球植被模型(DGVMs)在观测到的气候学和大气CO的作用下对当代全球碳循环进行建模的能力。 DGVM还与基于Hadley中心总循环模型(GCM)的快速“气候模拟模型”耦合,并在四种特殊报告排放方案(SRES)的未来运行:A1FI,A2,B1,B2。结果表明,所有DGVM均与当代全球土地碳预算一致。在对未来环境变化的更极端的预测下,DGVM的响应明显不同。特别是,很大的不确定性与热带植被对干旱和北方生态系统对高温和土壤湿度状况变化的响应有关。 DGVM对气候区域变化的反应比对大气CO含量增加的反应更大。当不考虑大气中CO浓度升高对植物生产的生理影响时,所有模型都模拟了陆地碳响应气候的释放,这意味着地球气候-碳循环反馈为正。所有DGVM都模拟了全球未来的气候变化,从而减少了全球净初级生产(NPP)并减少了在热带和热带地区的土壤停留时间。当考虑到气候和大气CO对生态系统功能的抵消作用时,所有DGVM都模拟了四种SRES排放情景下21世纪累积的土地净碳吸收量。但是,对于最极端的A1FI排放情景,五分之二的DGVM模拟21世纪最后几十年从陆地到大气的年度CO净来源。在这种情况下,21世纪DGVM之间的累积土地吸收差异为494 PgC。在当前水平下,这种不确定性相当于超过50年的人为排放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号