首页> 外文期刊>Global change biology >Seasonal and annual respiration of a ponderosa pine ecosystem
【24h】

Seasonal and annual respiration of a ponderosa pine ecosystem

机译:美国黄松生态系统的季节性和年度呼吸

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The net ecosystem exchange of CO2 between forests and the atmosphere, measured by eddy covariance, is the small difference between two large fluxes of photosynthesis and respiration. Chamber measurements of soil surface CO2 efflux (F-s), wood respiration (F-w,) and foliage respiration (F-f) help identify the contributions of these individual components to net ecosystem exchange. Models developed from the chamber data also provide independent estimates of respiration casts. We measured CO2 efflux with chambers periodically in 1996-97 in a ponderosa pine forest in Oregon, scaled these measurements to the ecosystem, and computed annual totals for respiration by component. We also compared estimated half-hourly ecosystem respiration at night (F-nc) with eddy covariance measurements. Mean foliage respiration normalized to 10 degrees C was 0.20 mu mol m(-2) (hemi-leaf surface area) s(-1), and reached a maximum of 0.24 mu mol m(-2) HSA s(-1) between days 162 and 208. Mean wood respiration normalized to 10 degrees C was 5.9 mu mol m(-3) sapwood s(-1), with slightly higher rates in mid-summer, when growth occurs. There was no significant difference (P > 0.10) between wood respiration of young (45 years) and old trees (250 years). Soil surface respiration normalized to 10 degrees C ranged from 0.7 to 3.0 mu mol m(-2) (ground) s(-1) from days 23 to 329, with the lowest rates in winter and highest rates in late spring. Annual CO2 flux from soil surface, foliage and wood was 683, 157, and 54 g C m(-2) y(-1), with soil fluxes responsible for 76% of ecosystem respiration. The ratio of net primary production to gross primary production was 0.45, consistent with values for conifer sites in Oregon and Australia, but higher than values reported for boreal coniferous forests. Below-ground carbon allocation (root turnover and respiration, estimated as F-s, - litterfall carbon) consumed 61% of GPP; high ratios such as this are typical of sites with more water and nutrient constraints. The chamber estimates were moderately correlated with change in CO2 storage in the canopy (F-stor) on calm nights (friction velocity u* < 0.25 m s(-1); R-2 = 0.60); F-stor was not significantly different from summed chamber estimates. On windy nights (u* > 0.25 m s(-1)), the sum of turbulent flux measured above the canopy by eddy covariance and Fstor Was only weakly correlated with summed chamber estimates (R-2 = 0.14); the eddy covariance estimates were lower than chamber estimates by 50%. [References: 53]
机译:用涡度协方差衡量,森林与大气之间的生态系统净二氧化碳交换量是光合作用和呼吸作用的两个较大通量之间的微小差异。对土壤表面CO2外排(F-s),木材呼吸(F-w)和树叶呼吸(F-f)进行腔室测量有助于确定这些单独成分对净生态系统交换的贡献。根据室内数据开发的模型还提供了呼吸次数的独立估计。我们在1996-97年间定期测量了俄勒冈州的一片黄松林中带有小室的CO2流出量,将这些测量结果缩放到生态系统,并按组成部分计算了每年的呼吸总量。我们还将夜间估计的半小时生态系统呼吸(F-nc)与涡度协方差测量结果进行了比较。归一化到10摄氏度的平均树叶呼吸为0.20摩尔mol m(-2)(半叶表面积)s(-1),在两者之间达到最大值0.24摩尔mol m(-2)HSA s(-1)第162和208天。归一化至10摄氏度的平均木材呼吸量为5.9摩尔mol m(-3)边材s(-1),仲夏时发生生长时速率稍高。幼龄(45岁)和老龄树木(250年)之间的木材呼吸没有显着差异(P> 0.10)。从23天到329天,归一化到10摄氏度的土壤表面呼吸的范围从0.7到3.0μmolmol m(-2)(地面)s(-1),冬天的比率最低,而春天的比率最高。来自土壤表面,枝叶和木材的年度CO2通量分别为683、157和54 g C m(-2)y(-1),其中土壤通量占生态系统呼吸作用的76%。净初级生产与总初级生产之比为0.45,与俄勒冈州和澳大利亚的针叶树用地价值一致,但高于北方针叶林的报告值。地下碳分配(根周转和呼吸,估计为F-s-凋落碳)消耗了GPP的61%;诸如此类的高比率是水和养分约束更多的典型地点。在安静的夜晚(摩擦速度u * <0.25 m s(-1); R-2 = 0.60);在暗夜里,舱室估计值与树冠(F-stor)中的CO2储存变化呈中等相关。 F-stor与总室估计值无显着差异。在大风的夜晚(u *> 0.25 m s(-1)),通过涡旋协方差和Fstor在冠层上方测得的湍流通量之和与总室估算值之间的相关性很小(R-2 = 0.14);涡度协方差估计值比分庭估计值低50%。 [参考:53]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号