...
首页> 外文期刊>Global change biology >Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae
【24h】

Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae

机译:高二氧化碳下植物氮素的吸收和相互作用:内生菌和菌根的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Both endophytic and mycorrhizal fungi interact with plants to form symbiosis in which the fungal partners rely on, and sometimes compete for, carbon (C) sources from their hosts. Changes in photosynthesis in host plants caused by atmospheric carbon dioxide (CO2) enrichment may, therefore, influence those mutualistic interactions, potentially modifying plant nutrient acquisition and interactions with other coexisting plant species. However, few studies have so far examined the interactive controls of endophytes and mycorrhizae over plant responses to atmospheric CO2 enrichment. Using Festuca arundinacea Schreb and Plantago lanceolata L. as model plants, we examined the effects of elevated CO2 on mycorrhizae and endophyte (Neotyphodium coenophialum) and plant nitrogen (N) acquisition in two microcosm experiments, and determined whether and how mycorrhizae and endophytes mediate interactions between their host plant species. Endophyte-free and endophyte-infected F. arundinacea varieties, P. lanceolata L., and their combination with or without mycorrhizal inocula were grown under ambient (400 mu mol mol(-1)) and elevated CO2 (ambient + 330 mu mol mol(-1)). A N-15 isotope tracer was used to quantify the mycorrhiza-mediated plant acquisition of N from soil. Elevated CO2 stimulated the growth of P. lanceolata greater than F. arundinacea, increasing the shoot biomass ratio of P. lanceolata to F. arundinacea in all the mixtures. Elevated CO2 also increased mycorrhizal root colonization of P. lanceolata, but had no impact on that of F. arundinacea. Mycorrhizae increased the shoot biomass ratio of P. lanceolata to F. arundinacea under elevated CO2. In the absence of endophytes, both elevated CO2 and mycorrhizae enhanced N-15 and total N uptake of P. lanceolata but had either no or even negative effects on N acquisition of F. arundinacea, altering N distribution between these two species in the mixture. The presence of endophytes in F. arundinacea, however, reduced the CO2 effect on N acquisition in P. lanceolata, although it did not affect growth responses of their host plants to elevated CO2. These results suggest that mycorrhizal fungi and endophytes might interactively affect the responses of their host plants and their coexisting species to elevated CO2.
机译:内生真菌和菌根真菌都与植物相互作用,形成共生关系,真菌伴侣依靠该共生关系,有时甚至竞争其宿主的碳(C)源。因此,大气中二氧化碳(CO2)富集导致寄主植物光合作用的变化可能会影响这些相互的相互作用,从而潜在地改变植物养分的获取以及与其他共存植物物种的相互作用。但是,到目前为止,很少有研究检查内生菌和菌根对植物对大气中二氧化碳富集反应的相互作用。我们使用Festuca arundinacea Schreb和Plantago lanceolata L.作为模型植物,在两个微观实验中研究了CO2升高对菌根和内生菌(Neotyphodium coenophialum)和植物氮(N)吸收的影响,并确定菌根和内生菌是否以及如何介导相互作用在它们的寄主植物之间。无内生细菌和内生细菌感染的阿魏氏疟原虫变种P. lanceolata L.及其与有或无菌根接种的组合均在环境(400μmol mol(-1))和升高的CO2(环境+ 330μmol mol)下生长(-1))。 N-15同位素示踪剂用于量化菌根介导的植物对土壤中N的吸收。升高的CO 2刺激了杉木(P. lanceolata)的生长大于金缕梅(F. arundinacea),从而增加了所有混合物中杉木(P. lanceolata)与金缕梅(F. arundinacea)的茎生物量比。升高的CO 2也增加了杉木的菌根根定植,但对金莲花没有影响。在CO 2浓度升高的情况下,菌根增加了P. lanceolata与F. arundinacea的茎生物量比。在没有内生菌的情况下,升高的CO2和菌根均增强了杉木的N-15和总N吸收,但对金莲花的氮获取没有影响甚至没有影响,甚至改变了这两个物种在混合物中的氮分布。然而,内生植物在无花果木中的存在降低了二氧化碳对轮叶杉木氮素吸收的影响,尽管它并不影响寄主植物对升高的二氧化碳的生长反应。这些结果表明,菌根真菌和内生菌可能相互作用地影响其寄主植物及其共存物种对二氧化碳浓度升高的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号