...
首页> 外文期刊>Global change biology >FLUXNET and modelling the global carbon cycle
【24h】

FLUXNET and modelling the global carbon cycle

机译:FLUXNET和全球碳循环建模

获取原文
获取原文并翻译 | 示例

摘要

Measurements of the net CO2 flux between terrestrial ecosystems and the atmosphere using the eddy covariance technique have the potential to underpin our interpretation of regional CO2 source-sink patterns, CO2 flux responses to forcings, and predictions of the future terrestrial C balance. Information contained in FLUXNET eddy covariance data has multiple uses for the development and application of global carbon models, including evaluation/validation, calibration, process parameterization, and data assimilation. This paper reviews examples of these uses, compares global estimates of the dynamics of the global carbon cycle, and suggests ways of improving the utility of such data for global carbon modelling. Net ecosystem exchange of CO2 (NEE) predicted by different terrestrial biosphere models compares favourably with FLUXNET observations at diurnal and seasonal timescales. However, complete model validation, particularly over the full annual cycle, requires information on the balance between assimilation and decomposition processes, information not readily available for most FLUXNET sites. Site history, when known, can greatly help constrain the model-data comparison. Flux measurements made over four vegetation types were used to calibrate the land-surface scheme of the Goddard Institute for Space Studies global climate model, significantly improving simulated climate and demonstrating the utility of diurnal FLUXNET data for climate modelling. Land-surface temperatures in many regions cool due to higher canopy conductances and latent heat fluxes, and the spatial distribution of CO2 uptake provides a significant additional constraint on the realism of simulated surface fluxes. FLUXNET data are used to calibrate a global production efficiency model (PEM). This model is forced by satellite-measured absorbed radiation and suggests that global net primary production (NPP) increased 6.2% over 1982-1999. Good agreement is found between global trends in NPP estimated by the PEM and a dynamic global vegetation model (DGVM), and between the DGVM and estimates of global NEE derived from a global inversion of atmospheric CO2 measurements. Combining the PEM, DGVM, and inversion results suggests that CO2 fertilization is playing a major role in current increases in NPP, with lesser impacts from increasing N deposition and growing season length. Both the PEM and the inversion identify the Amazon basin as a key region for the current net terrestrial CO2 uptake (i.e. 33% of global NEE), as well as its interannual variability. The inversion's global NEE estimate of -1.2 Pg [C] yr(-1) for 1982-1995 is compatible with the PEM- and DGVM-predicted trends in NPP. There is, thus, a convergence in understanding derived from process-based models, remote-sensing-based observations, and inversion of atmospheric data. Future advances in field measurement techniques, including eddy covariance (particularly concerning the problem of night-time fluxes in dense canopies and of advection or flow distortion over complex terrain), will result in improved constraints on land-atmosphere CO2 fluxes and the rigorous attribution of mechanisms to the current terrestrial net CO2 uptake and its spatial and temporal heterogeneity. Global ecosystem models play a fundamental role in linking information derived from FLUXNET measurements to atmospheric CO2 variability. A number of recommendations concerning FLUXNET data are made, including a request for more comprehensive site data (particularly historical information), more measurements in undisturbed ecosystems, and the systematic provision of error estimates. The greatest value of current FLUXNET data for global carbon cycle modelling is in evaluating process representations, rather than in providing an unbiased estimate of net CO2 exchange.
机译:利用涡度协方差技术测量陆地生态系统与大气之间的净CO2通量,有可能支持我们对区域CO2源汇模式,对强迫的CO2通量响应以及对未来陆地C平衡的预测的解释。 FLUXNET涡度协方差数据中包含的信息在全局碳模型的开发和应用中具有多种用途,包括评估/验证,校准,过程参数化和数据同化。本文回顾了这些用途的示例,比较了全球碳循环动态的全球估计,并提出了改善此类数据在全球碳建模中的效用的方法。由不同陆地生物圈模型预测的净生态系统二氧化碳交换量(NEE)与昼夜和季节时标的FLUXNET观测结果相比具有优势。但是,完整的模型验证,尤其是在整个年度周期中,需要有关同化和分解过程之间平衡的信息,而对于大多数FLUXNET站点而言,这些信息并不容易获得。站点历史记录(如果已知)可以极大地帮助限制模型数据的比较。对四种植被类型进行的通量测量被用于校准戈达德空间研究所全球气候模型的地表方案,从而显着改善了模拟气候,并证明了每日FLUXNET数据在气候建模中的实用性。由于较高的冠层电导和潜热通量,许多地区的地表温度会降低,而二氧化碳吸收的空间分布对模拟的表面通量的现实性提供了重要的额外限制。 FLUXNET数据用于校准全球生产效率模型(PEM)。该模型是由卫星测量的吸收辐射强迫的,表明全球净初级生产(NPP)比1982-1999年增加了6.2%。在PEM估计的NPP的全球趋势与动态全球植被模型(DGVM)之间以及DGVM与从大气CO2测量的全球反演得出的全球NEE的估计之间找到了很好的一致性。结合PEM,DGVM和反演结果表明,CO2施肥在当前NPP的增加中起主要作用,而氮沉降增加和生长季节长度的影响较小。 PEM和反演都将亚马逊流域确定为当前陆地净二氧化碳吸收量(即全球NEE的33%)及其年际变化的关键区域。 1982-1995年反演的全球NEE估计值为-1.2 Pg [C] yr(-1)与PEM和DGVM预测的NPP趋势一致。因此,从基于过程的模型,基于遥感的观测和大气数据的反演中获得的理解上的趋同。田间测量技术的未来发展,包括涡动协方差(特别是关于密集机盖中的夜间通量以及复杂地形上的平流或流量畸变的问题),将导致对陆地大气CO2通量的约束得到严格的限制,并导致气候变化的严格归因。当前陆地净CO2吸收的机制及其时空异质性。全球生态系统模型在将FLUXNET测量数据与大气CO2变异性联系起来的过程中起着基本作用。提出了许多有关FLUXNET数据的建议,包括要求更全面的站点数据(尤其是历史信息),在不受干扰的生态系统中进行更多测量以及系统提供误差估计。当前FLUXNET数据对于全球碳循环建模的最大价值在于评估过程表示形式,而不是提供净二氧化碳交换的无偏估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号