首页> 外文期刊>Bioinspiration & biomimetics >A fundamental mechanism of legged locomotion with hip torque and leg damping
【24h】

A fundamental mechanism of legged locomotion with hip torque and leg damping

机译:带髋部扭力和腿部阻尼的腿式运动的基本机制

获取原文
获取原文并翻译 | 示例
           

摘要

New models and theories of legged locomotion are needed to better explain and predict the robustly stable legged locomotion of animals and some bio-inspired robots. In this paper we observe that a hip-torque and leg-damping mechanism is fundamental to many legged robots and some animals and determine its affect on locomotion dynamics. We discuss why this hip-torque-and-leg- damping mechanism is not so easily understood. We investigate how hip-torque and leg-damping affect the stability and robustness of locomotion using a mathematical model: First, we extend the canonical spring-loaded-inverted- pendulum model to include constant hip torque and leg damping proportional to leg length speed. Then, we calculate the stability and robustness of locomotion as a function of increasing levels of torque and damping, starting from zero - the energy conserving and marginally stable special case - to high levels of torque and damping. We find that the stabilizing effects of hip-torque and leg-damping occur in the context of the piecewise-continuous dynamics of legged locomotion, and so linear intuition does not apply. We discover that adding hip torque and leg damping changes the stability of legged locomotion in an unexpected way. When a small amount of torque and damping are added, legged locomotion is initially destabilized. As more torque and damping are added, legged locomotion turns stable and becomes increasingly more stable and more robust the more torque and damping are added. Also, stable locomotion becomes more probable over the biologically-relevant region of the parameter space, indicating greater prediction and explanatory capabilities of the model. These results provide a more clear understanding of the hip-torque-and-leg-damping mechanism of legged locomotion, and extend existing theory of legged locomotion towards a greater understanding of robustly stable locomotion.
机译:需要新的腿部运动模型和理论来更好地解释和预测动物和一些受生物启发的机器人的鲁棒稳定的腿部运动。在本文中,我们观察到髋部扭力和腿部阻尼机制对于许多有腿机器人和某些动物至关重要,并确定了其对运动动力学的影响。我们讨论了为什么这种髋部扭矩和腿部阻尼机制不那么容易理解。我们使用数学模型研究髋部扭矩和腿部阻尼如何影响运动的稳定性和鲁棒性:首先,我们将规范的弹簧加载倒置摆模型扩展为包括恒定的髋部扭矩和与腿部长度速度成比例的腿部阻尼。然后,我们计算运动的稳定性和鲁棒性,作为增加扭矩和阻尼水平的函数,从零开始(从节能和略微稳定的特殊情况开始)到高扭矩和阻尼水平。我们发现,髋部扭矩和腿部阻尼的稳定作用发生在腿部运动的分段连续动力学的背景下,因此线性直觉并不适用。我们发现增加髋部扭矩和腿部阻尼会以意外的方式改变腿部运动的稳定性。当添加少量扭矩和阻尼时,腿式运动最初会不稳定。随着增加更多的扭矩和阻尼,有腿的运动会变得稳定,并且增加更多的扭矩和阻尼会变得越来越稳定和坚固。同样,在参数空间的生物学相关区域上,稳定的移动变得更有可能,这表明该模型具有更大的预测和解释能力。这些结果提供了对腿部运动的髋部扭力和腿部阻尼机制的更清晰的理解,并将现有的腿部运动的理论扩展到对鲁棒稳定的运动的更多理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号