首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Hybrid finite-difference integral equation solver for 3D frequency domain anisotropic electromagnetic problems
【24h】

Hybrid finite-difference integral equation solver for 3D frequency domain anisotropic electromagnetic problems

机译:混合有限差分积分方程求解器,用于3D频域各向异性电磁问题

获取原文
获取原文并翻译 | 示例
           

摘要

The modeling of the controlled-source electromagnetic (CSEM) and single-well and crosswell electromagnetic (EM) configurations requires fine gridding to take into account the 3D nature of the geometries encountered in these applications that include geological structures with complicated shapes and exhibiting large variations in conductivities such as the sea-floor bathymetry, the land topography, and targets with complex geometries and large contrasts in conductivities. Such problems significantly increase the computational cost of the conventional finite-difference (FD) approaches mainly due to the large condition numbers of the corresponding linear systems. To handle these problems, we employ a volume integral equation (IE) approach to arrive at an effective preconditioning operator for our FD solver. We refer to this new hybrid algorithm as the finite-difference integral equation method (FDIE). This FDIE preconditioning operator is divergence free and is based on a magnetic field formulation. Similar to the Lippman-Schwinger IE method, this scheme allows us to use a background elimination approach to reduce the computational domain, resulting in a smaller size stiffness matrix. Furthermore, it yields a linear system whose condition number is close to that of the conventional Lippman-Schwinger IE approach, significantly reducing the condition number of the stiffness matrix of the FD solver. Moreover, the FD framework allows us to substitute convolution operations by the inversion of banded matrices, which significantly reduces the computational cost per iteration of the hybrid method compared to the standard IE approaches. Also, well-established FD homogenization and optimal gridding algorithms make the FDIE more appropriate for the discretization of strongly inhomogeneous media. Some numerical studies are presented to illustrate the accuracy and effectiveness of the presented solver for CSEM, single-well, and crosswell EM applications.
机译:受控源电磁(CSEM)以及单井和井间电磁(EM)配置的建模需要精细的网格化,以考虑这些应用中遇到的几何形状的3D性质,这些几何形状包括形状复杂且变化较大的地质结构电导率,例如海底测深法,陆地地形以及具有复杂几何形状和电导率大差异的目标。这些问题主要由于相应线性系统的条件数大,大大增加了常规有限差分(FD)方法的计算成本。为了解决这些问题,我们采用体积积分方程(IE)的方法来为FD解算器找到有效的预处理算子。我们将此新的混合算法称为有限差分积分方程法(FDIE)。该FDIE预处理算子无散度,基于磁场公式。与Lippman-Schwinger IE方法类似,此方案允许我们使用背景消除方法来减少计算域,从而得到较小的刚度矩阵。此外,它产生的线性系统的条件数与常规Lippman-Schwinger IE方法的条件数相近,从而大大减少了FD求解器的刚度矩阵的条件数。此外,FD框架允许我们通过带状矩阵的求逆来代替卷积运算,与标准IE方法相比,这大大降低了混合方法每次迭代的计算成本。同样,成熟的FD均质化和最佳网格算法使FDIE更适合于强烈非均匀介质的离散化。提出了一些数值研究来说明所提出的求解器在CSEM,单井和交叉井EM应用中的准确性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号