首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Linking reservoir geomechanics and time-lapse seismics: Predicting anisotropic velocity changes and seismic attributes
【24h】

Linking reservoir geomechanics and time-lapse seismics: Predicting anisotropic velocity changes and seismic attributes

机译:将油藏地质力学与延时地震联系起来:预测各向异性速度变化和地震属性

获取原文
获取原文并翻译 | 示例
       

摘要

Seismic technology has been used successfully to detect geomechanically induced signals in repeated seismic experiments from more than a dozen fields. To explain geomechanically induced time-lapse (4D) seismic signals, we use results from coupled reservoir and geomechanical modeling. The coupled simulation yields the 3D distribution, over time, of subsurface deformation and triaxial stress state in the reservoir and the surrounding rock. Predicted changes in triaxial stress state are then used to compute changes in anisotropic P- and S-wave velocities employing a stress sensitive rock-physics transform. We predict increasing vertical P-wave velocities inside the reservoir, accompanied by a negative change in P-wave anisotropy (Delta epsilon=Delta delta < 0). Conversely, in the overburden and underburden, we have predicted a slowdown in vertical P-wave velocity and an increase in horizontal velocities. This corresponds to positive change in P-wave anisotropy (Delta epsilon=Delta delta>0). A stress sensitive rock-physics transform that predicts anisotropic velocity change from triaxial stress change offers an explanation for the apparent difference in stress sensitivity of P-wave velocity between the overburden and the reservoir. In a modeled example, the vertical velocity speedup per unit increase in vertical stress Delta sigma(V) is more than twice as large in the overburden as in the reservoir. The difference is caused by the influence of the stress path K (i.e., the ratio K=Delta sigma(h)/Delta sigma(V) between change in minimum horizontal effective stress Delta sigma(h) and change in vertical effective stress Delta sigma(V)) on vertical velocity. The modeling suggests that time-lapse seismic technology has the potential to become a monitoring tool for stress path, a critical parameter in failure geomechanics.
机译:地震技术已成功用于从十几个领域进行的重复地震实验中检测地质力学感应信号。为了解释地质力学诱发的时移(4D)地震信号,我们使用了耦合储层和地质力学建模的结果。耦合模拟得出了储层和围岩中地下变形和三轴应力状态随时间的3D分布。然后使用应力敏感的岩石物理变换,将预测的三轴应力状态变化用于计算各向异性P波和S波速度的变化。我们预测储层内部垂直P波速度将增加,同时P波各向异性将发生负变化(Δepsilon = Delta delta <0)。相反,在上覆层和下覆层中,我们预测了垂直纵波速度会减慢,水平速度会增加。这对应于P波各向异性的正变化(Δε=Δδ> 0)。从三轴应力变化预测各向异性速度变化的应力敏感岩石物理变换,为上覆岩层与储层之间纵波速度的应力敏感度表观差异提供了解释。在一个模型实例中,上覆层中垂直应力每增加一个单位的垂直速度提速,在上覆层中是在储层中的两倍以上。差异是由应力路径K的影响引起的(即,最小水平有效应力Delta sigma(h)的变化与垂直有效应力Delta sigma的变化之间的比率K = Delta sigma(h)/ Delta sigma(V) (V))的垂直速度。该模型表明,时移地震技术有可能成为应力路径的监测工具,应力路径是破坏地质力学的关键参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号