首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Measures of scale based on the wavelet scalogram with applications to seismic attenuation
【24h】

Measures of scale based on the wavelet scalogram with applications to seismic attenuation

机译:基于小波尺度图的尺度测量及其在地震衰减中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The attenuation of seismic signal is usually characterized in the frequency domain using Fourier power spectra and is often usefully characterized by average measures, such as the center frequency or spectral mean. Fourier analysis, however, suffers from time-frequency resolution problems. Wavelet analysis has better time-frequency localization and offers superior spectral decomposition. In this paper, we show that seismic attenuation can be characterized by the scalogram (also called energy density) in the wavelet domain. A single scale encompasses a frequency band. The scalogram relates absorption to peak-scale variations. The peak scale is the scale of maximum amplitude in the scalogram. Seismic attenuation can be estimated directly from the scalogram according to the scale shift of the data and can also be described indirectly by the centroid of scale (the mean of a scalogram). In absorbing media, seismic attenuation increases with frequency, i.e., decreases with scale. In the wavelet domain, small-scale energies of the seismic signal are attenuated more rapidly than are large-scale energies as waves propagate. As a result, both the peak scale and the centroid of the signal's scalogram increase during propagation. Under the assumption of a frequency-independent Q model, these increases of the peak scale and the centroid of scale are inversely proportional to the quality factor, i.e., a lower quality factor results in an upshift of the peak scale in the scalogram and an increase of the centroid of scale. The peak-scale-shift method can be applied to seismic data with sufficiently broad signal bandwidth. The centroid of scale can be used as an attribute to qualitatively characterize seismic attenuation. Examples of gas detection in both synthetic and field data show the value of this technique.
机译:地震信号的衰减通常使用傅立叶功率谱在频域中进行表征,并且通常通过平均测度(例如中心频率或频谱平均值)来表征。然而,傅立叶分析存在时频分辨率问题。小波分析具有更好的时频定位,并提供了出色的频谱分解。在本文中,我们表明地震衰减可以通过小波域中的比例图(也称为能量密度)来表征。单个标度包含一个频带。比例图将吸收与峰值比例变化相关联。峰值比例是比例图中最大振幅的比例。地震衰减可以根据数据的比例偏移直接从比例尺估算出来,也可以通过比例质心(比例尺平均值)间接描述。在吸收介质中,地震衰减随频率增加,即随比例减小。在小波域中,随着波传播,地震信号的小规模能量比大范围能量衰减得更快。结果,信号比例尺的峰值比例和质心在传播过程中都会增加。在与频率无关的Q模型的假设下,峰标度和标度质心的这些增加与质量因子成反比,即,较低的质量因数会导致比例图中的峰标度上移并增加比例质心。峰值尺度位移法可以应用于具有足够宽的信号带宽的地震数据。比例质心可以用作定性表征地震衰减的属性。合成数据和现场数据中的气体检测示例均显示了该技术的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号