首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Diffusional coupling between microfractures and pore structure and its impact on nuclear magnetic resonance measurements in multiple-porosity systems
【24h】

Diffusional coupling between microfractures and pore structure and its impact on nuclear magnetic resonance measurements in multiple-porosity systems

机译:微裂缝与孔隙结构之间的扩散耦合及其对多孔隙系统中核磁共振测量的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Nuclear magnetic resonance (NMR) relaxation time measurements, although among the most accurate methods to estimate formation porosity, have been considered conventionally as insensitive to the presence of microfractures. Hence, the NMR responses in multiple-porosity systems, which may contain intergranular pores, microfractures, or channel-like inclusions, have not yet been thoroughly investigated. NMR pore-scale simulations using a random-walk algorithm enabled us to quantify the impact of microfractures/channels on NMR measurements and to propose a new concept of fracture-pore diffusional coupling in such heterogeneous systems. We randomly distributed and oriented microfractures (or channels) in 3D pore-scale images of different rock matrices. We then quantified the sensitivity of NMR T-2 (spin-spin relaxation time) distribution to the presence of microfractures (or channels) and compared the pore-scale simulation results against a previously published experimental study. The pore-scale simulation results from synthetic rock samples revealed that NMR T-2 distribution can be influenced not only by the pore-size distribution but also significantly by fracture-pore diffusional coupling. The intergranular pore size can be underestimated by up to 29%, and the volume fraction of intergranular pores can be underestimated by more than 10%, if the impact of diffusional coupling was not taken into account in interpretation of NMR measurements. Furthermore, we developed a simplified 1D analytical model for fracture-pore diffusional coupling. The analytical solutions of the 1D model were in agreement with the simulation results in the synthetic rock samples, which further demonstrated the existence of fracture-pore coupling in multiple-porosity systems. The developed 1D model enabled real-time evaluation of diffusional coupling effect in the presence of microfractures and complex pore-size distribution. The results were promising for future applications of NMR relaxometry for the assessment of micro-fracture content, when combined with other conventional well logs.
机译:核磁共振(NMR)弛豫时间测量虽然是估计地层孔隙度的最准确方法之一,但通常认为它对微裂缝的存在不敏感。因此,尚未完全研究多孔隙系统中的NMR响应,该系统可能包含晶间孔,微裂缝或通道状夹杂物。使用随机游走算法进行的NMR孔隙尺度模拟使我们能够量化微裂缝/通道对NMR测量的影响,并提出了在此类异质系统中裂缝-孔隙扩散耦合的新概念。我们在不同岩石矩阵的3D孔径图像中随机分布和定向微裂缝(或通道)。然后,我们对NMR T-2(自旋-自旋弛豫时间)分布对存在微裂缝(或通道)的敏感性进行了量化,并将孔尺度模拟结果与先前发表的实验研究进行了比较。合成岩石样品的孔隙尺度模拟结果表明,NMR T-2分布不仅会受到孔径分布的影响,而且还会受到裂缝-孔隙扩散耦合的显着影响。如果在NMR测量的解释中未考虑扩散耦合的影响,则可将晶粒间孔的大小低估最多29%,而将晶粒间孔的体积分数低估10%以上。此外,我们为裂缝-孔扩散耦合开发了简化的一维分析模型。一维模型的解析解与合成岩石样品中的模拟结果相吻合,这进一步证明了在多孔隙度系统中裂缝-孔隙耦合的存在。开发的一维模型能够在存在微裂缝和复杂的孔径分布的情况下实时评估扩散耦合效应。当与其他常规测井相结合时,该结果对于NMR弛豫法在评估微裂缝含量方面的未来应用是有前途的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号