...
首页> 外文期刊>Geophysical and Astrophysical Fluid Dynamics >Eulerian and Lagrangian means in rotating, magnetohydrodynamic flows II. Braginsky’s nearly axisymmetric dynamo
【24h】

Eulerian and Lagrangian means in rotating, magnetohydrodynamic flows II. Braginsky’s nearly axisymmetric dynamo

机译:欧拉和拉格朗日是指旋转的磁流体动力流II。布拉金斯基的近轴对称发电机

获取原文
           

摘要

The Hybrid Euler–Lagrange (HEL) approach has been usefully applied to weakly dissipative systems characterised by waves riding on mean flow. Soward (Phil. Trans. R. Soc. Lond. A 1972, 272, 431) showed how the HEL-formulation could elucidate remarkable features of the nearly axisymmetric large magnetic Reynolds number dynamo of Braginsky (JETP 1964, 47, 1084). Since Braginsky’s treatment of the nearly axisymmetric dynamo relies on azimuthal averages, those can only be taken when the azimuth is a coordinate direction. In that respect, the unified derivation and presentation of the HEL-equations governing rotating magnetohydrodynamic convective flows, as later reviewed and extended by Roberts and Soward (Geophys. Astrophys. Fluid Dyn. 2006, 100, 457), suffer the shortcoming that it was developed relative to rectangular Cartesian coordinates. Here we undertake those modifications needed to transform the rectangular Cartesian coordinate formulation into cylindrical polar coordinates. Being a Lagrangian description, application of the HEL-method means that the variables used, dependent on coordinates x, do not describe conditions at the position P: x but on conditions elsewhere at some displaced position P~L: x~L(x, t) = x + ξ (x, t), generally dependent on time t. To address this issue Soward and Roberts (J. Fluid Mech. 2010, 661, 45) invoked an idea pioneered by Moffatt (J. Fluid Mech. 1986, 166, 359), whereby the point x is dragged to x~L(x, t) by a “fictitious steady flow” η(x, t) in a unit of “fictitious time”. This is the “Lie dragging” technique of general tensor calculus, which we apply here to the HEL-equations governing Braginsky’s nearly axisymmetric dynamo.We consider the “effective-variables” introduced by Braginsky, appropriate for small displacement ξ, and show that η, rather than ξ, is their natural expansion variable. As well as revisiting Braginsky’s kinematic dynamo, we reassess the hydromagnetic extensions of Tough and Roberts (Phys. Earth Planet. Inter. 1968, 1, 288).
机译:混合欧拉-拉格朗日(HEL)方法已有效地应用于以波浪在平均流上骑行为特征的弱耗散系统。 Soward(Phil。Trans。R. Soc。Lond。A 1972,272,431)显示了HEL公式如何阐明Braginsky近轴对称大雷诺数发电机的显着特征(JETP 1964,47,1084)。由于Braginsky对几乎轴对称的发电机的处理依赖于方位角平均值,因此只有在方位角为坐标方向时才能采用这些平均值。在这方面,控制旋转磁流体动力对流的HEL方程的统一推导和表示,后来又由Roberts和Soward审查和扩展(Geophys。Astrophys。Fluid Dyn。2006,100,457),其缺点是相对于直角笛卡尔坐标而发展。在这里,我们进行了将直角笛卡尔坐标公式转换为圆柱极坐标所需的修改。作为拉格朗日描述,HEL方法的应用意味着所使用的变量取决于坐标x而不是描述位置P:x的条件,而是描述某些位移位置P〜L的条件:x〜L(x, t)= x +ξ(x,t),通常取决于时间t。为了解决这个问题,Soward和Roberts(J. Fluid Mech。2010,661,45)援引了Moffatt(J. Fluid Mech。1986,166,359)提出的想法,将点x拖动到x〜L(x ,t)以“虚拟时间”为单位的“虚拟稳定流”η(x,t)表示。这是一般张量微积分的“ Lie拖曳”技术,我们将其应用于支配Braginsky近轴对称发电机的HEL方程。我们认为Braginsky引入的“有效变量”适用于小位移ξ,并证明η是自然膨胀变量,而不是ξ。除了重新审视布拉金斯基的运动学发电机之外,我们还重新评估了托夫和罗伯茨的水磁学扩展(Phys。Earth Planet。Inter。1968,1,288)。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号