...
首页> 外文期刊>Biogeosciences >Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations
【24h】

Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

机译:基于名义光利用效率的碳,水和能量通量耦合的热模型建模,受叶绿素观测值的限制

获取原文
获取原文并翻译 | 示例
           

摘要

Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light use efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of absorbed photosynthetically active radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbonenabled version of the remote-sensing-based two-source energy balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical submodel of canopy resistance constrained by inputs of nominal LUE (beta(n)), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration, and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy beta(n) from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is nonlinearly related to beta(n), with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying beta(n) inputs based on an empirical relationship with in situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-beta(n) relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.
机译:最近的研究表明,叶片叶绿素含量(Chl)的估计值(定义为每单位叶面积的叶绿素a和叶绿素b的总质量)可用于限制对冠层光利用效率(LUE)的估计。冠层LUE描述了给定数量的光合作用活性辐射(APAR)吸收后,植物冠层吸收的碳量,并且是模拟陆面碳通量的关键参数。基于遥感的两源能量平衡(TSEB)模型的含碳功能版本使用受名义LUE(beta(n))输入约束的冠层阻力分析子模型来模拟耦合的冠层蒸腾作用和碳同化作用。该模型可响应光照,湿度,环境CO2浓度和温度的变化条件。土壤水分对水和碳交换的限制通过地表温度的红外热测量间接传达给TSEB-LUE。我们调查了使用Chl估计值从内布拉斯加州米德附近的大豆和玉米的灌溉和雨养田获得的Chl的原位测量中捕获冠层beta(n)的季节性趋势的能力。结果表明,实测的Chl与beta(n)非线性相关,其变异性主要与早期生长和衰老期间的物候变化有关。利用与现场测得的Chl的经验关系基于季节性变化的beta(n)输入,可改善TSEB模型的碳通量估算值,同时调节植物蒸腾作用与土壤蒸发之间的总失水分配。观察到的Chl-beta(n)关系提供了一种将遥感Chl集成到TSEB模型中的功能机制,具有改善植被景观中碳,水和能量通量耦合的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号