首页> 外文期刊>Biogeosciences >Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model
【24h】

Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model

机译:自然海洋碳循环对气候模型中循环利用参数化的敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO_2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO_2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2 %) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which eventually resurfaces with the global thermohaline circulation especially in the Southern Ocean. Because of the reduced primary production and carbon export in GISSEH compared to GISSER, the biological pump efficiency, i.e., the ratio of primary production and carbon export at 75 m, is half in the GISSEH of that in GISSER, The Southern Ocean emerges as a key region where the CO_2 flux is as sensitive to biological parameterizations as it is to physical parameterizations. The fidelity of ocean mixing in the Southern Ocean compared to observations is shown to be a good indicator of the magnitude of the biological pump efficiency regardless of physical model choice.
机译:本文探讨了GISS(哥达德空间研究所)气候建模系统中海洋生物泵的敏感性。通过使用耦合到同一大气层的两个不同海洋模型对海气CO_2气体交换进行双控制模拟,得出了结果。两种海洋模型(罗素海洋模型和混合坐标海洋模型,HYCOM)使用不同的垂直坐标系,因此使用不同的列物理表示形式。 GISS气候模型的两个变体都耦合到相同的海洋生物地球化学模块(NASA海洋生物地球化学模型,NOBM),该模块计算影响CO_2的海海通量以及深海碳迁移和扩散的生物和非生物领域的预后分布。存储。尤其是,将由于再矿化率变化而产生的模型差异与归因于在两个海洋模型(例如通风,混合,涡流搅拌和垂直对流)中建模过程不同的物理过程的差异进行比较。发现GISSEH(GISSER)在南大洋中比观测低估了混合层深度约55%(10%),而在北高纬度地区则高估了约17%(低估2%)。在全球海洋的其他任何地方,这两个模型都低估了表面混合约12-34%,这阻止了深层营养物质到达表面并促进了那里的初级生产。因此,由于地表产量的减少,减少了碳的出口。此外,碳出口对亚热带回旋的额叶区域和赤道处的再矿化率变化特别敏感,模型中的这种敏感性远高于对物理过程(如垂直混合,垂直对流和中尺度涡流传输)的敏感性。在深处,具有很大暖偏性的GISSER可以更快地重新矿化养分和碳,从而在深处产生更多的养分和碳,最终随着全球热盐环流(特别是在南大洋)重新出现。由于与GISSER相比,GISSEH的初级生产和碳出口减少,因此,生物泵效率(即75 m处的初级生产和碳出口的比率)是GISSEH的一半,是GISSER的一半。 CO_2通量对生物学参数设置和物理参数设置一样敏感的关键区域。与观测值相比,南大洋的保真度被证明是生物泵效率大小的良好指标,而与物理模型的选择无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号