首页> 外文期刊>Biogeosciences >Spatiotemporal variability and drivers of pCO_2 and air-sea CO_2 fluxes in the California Current System: an eddy-resolving modeling study
【24h】

Spatiotemporal variability and drivers of pCO_2 and air-sea CO_2 fluxes in the California Current System: an eddy-resolving modeling study

机译:加利福尼亚洋流系统中pCO_2和海气CO_2通量的时空变异性和驱动因素:涡旋模拟研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We quantify the CO_2 source/sink nature of the California Current System (CalCS) and determine the drivers and processes behind the mean and spatiotemporal variability of the partial pressure of CO_2 (pCO_2) in the surface ocean. To this end, we analyze eddy-resolving, climatological simulations of a coupled physical-biogeochemical oceanic model on the basis of the Regional Oceanic Modeling System (ROMS). In the annual mean, the entire CalCS within 800 km of the coast and from ~33° N to 46° N is essentially neutral with regard to atmospheric CO_2: the model simulates an integrated uptake flux of ?0.9±3.6 TgC yr~(?1), corresponding to an average flux density of ?0.05±0.20 molCm~(?2) yr~(?1). This near zero flux is a consequence of an almost complete regional compensation between (i) strong outgassing in the nearshore region (first 100 km) that brings waters with high concentrations of dissolved inorganic carbon (DIC) to the surface and (ii) and a weaker, but more widespread uptake flux in the offshore region due to an intense biological reduction of this DIC, driven by the nutrients that are upwelled together with the DIC. The air-sea CO_2 fluxes vary substantially in time, both on seasonal and sub-seasonal timescales, largely driven by variations in surface ocean pCO_2. Most of the variability in pCO_2 is associated with the seasonal cycle, with the exception of the nearshore region, where sub-seasonal variations driven by mesoscale processes dominate. In the regions offshore of 100 km, changes in surface temperature are the main driver, while in the nearshore region, changes in surface temperature, as well as anomalies in DIC and alkalinity (Alk) owing to changes in circulation, biological productivity and air-sea CO_2 fluxes dominate. The prevalence of eddy-driven variability in the nearshore 100 km leads to a complex spatiotemporal mosaic of surface ocean pCO_2 and air-sea CO_2 fluxes that require a substantial observational effort to determine the source/sink nature of this region reliably.
机译:我们量化了加利福尼亚洋流系统(CalCS)的CO_2源/汇性质,并确定了表层海洋中CO_2(pCO_2)分压的均值和时空变异性背后的驱动因素和过程。为此,我们在区域海洋建模系统(ROMS)的基础上分析了耦合的物理-生物地球化学海洋模型的旋涡解析气候模拟。以年平均值计,在海岸800 km范围内,从〜33°N到46°N,整个CalCS相对于大气CO_2基本上是中性的:该模型模拟的整体吸收通量为0.9±3.6 TgC yr〜(? 1),相当于平均通量密度为0.05±0.20 molCm〜(?2)yr〜(?1)。接近零的通量是由于(i)在近岸区域(前100 km)强烈除气之间的几乎完全区域补偿的结果,该气体将具有高浓度的溶解性无机碳(DIC)的水带到地表与(ii)和由于DIC的营养物质大量减少,DIC的生物活性大大降低,因此近海的吸收通量较弱,但分布较普遍。在季节和次季节时间尺度上,海-海CO_2通量的时间变化很大,主要受表层海洋pCO_2的变化驱动。除近岸地区外,pCO_2的大部分变化都与季节周期有关,在近岸地区,由中尺度过程驱动的亚季节变化占主导。在100 km的近海区域,地表温度的变化是主要驱动力,而在近岸的区域,地表温度的变化以及由于循环,生物生产力和空气的变化而引起的DIC和碱度(Alk)异常。海洋CO_2通量占主导地位。近岸100 km的涡动变化普遍存在,导致地表海洋pCO_2和海气CO_2通量的时空镶嵌复杂,需要大量的观测工作才能可靠地确定该区域的源/汇性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号