首页> 外文期刊>Biogeosciences >Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)
【24h】

Comparative studies of pelagic microbial methane oxidation within the redox zones of the Gotland Deep and Landsort Deep (central Baltic Sea)

机译:哥得兰岛深部和Landsort深部(中波罗的海)的氧化还原区内中上层微生物甲烷氧化的比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

Pelagic methane oxidation was investigated in dependence on differing hydrographic conditions within the redox zone of the Gotland Deep (GD) and Landsort Deep (LD), central Baltic Sea. The redox zone of both deeps, which indicates the transition between oxic and anoxic conditions, was characterized by a pronounced methane concentration gradient between the deep water (GD: 1233 nM, 223 m; LD: 2935 nM, 422 m) and the surface water (GD and LD<10 nM). This gradient together with a ~(13)C CH_4 enrichment (δ~(13)C CH_4 deep water: GD ?84 ‰, LD ?71 ‰; redox zone: GD ?60 ‰, LD ~(~(?2))0 ‰; surface water: GD ?47 ‰, LD ?50 ‰; δ~(13)C CH_4 vs. Vienna Pee Dee Belemnite standard), clearly indicating microbial methane consumption within the redox zone. Expression analysis of the methane monooxygenase identified one active type I methanotrophic bacterium in both redox zones. In contrast, the turnover of methane within the redox zones showed strong differences between the two basins (GD: max. 0.12nMd~(~(?1)), LD: max. 0.61nMd~(~(?1))), with a nearly four-times-lower turnover time of methane in the LD (GD: 455 d, LD: 127 d). Vertical mixing rates for both deeps were calculated on the base of the methane concentration profile and the consumption of methane in the redox zone (GD: 2.5×10~(?6) m~2 s~(~(?1)), LD: 1.6×10~(?5) m~2 s~(~(?1))). Our study identified vertical transport of methane from the deep-water body towards the redox zone as well as differing hydrographic conditions (lateral intrusions and vertical mixing) within the redox zone of these deeps as major factors that determine the pelagic methane oxidation.
机译:根据波罗的海中部哥特兰深水区(GD)和兰德索特深水区(LD)的氧化还原区内不同的水文条件,研究了浮游甲烷的氧化。两个深层的氧化还原带都表明了有氧和无氧条件之间的过渡,其特征是深水(GD:1233 nM,223 m; LD:2935 nM,422 m)之间的甲烷浓度梯度明显。 (GD和LD <10 nM)。该梯度与〜(13)C CH_4富集一起(δ〜(13)C CH_4深水:GD〜84‰,LD〜71‰;氧化还原带:GD〜60‰,LD〜(〜(?2)) 0‰;地表水:GD≥47‰,LD≥50‰;δ〜(13)C CH_4对Vienna Pee Dee Belemnite标准),清楚地表明了氧化还原区内的微生物甲烷消耗量。甲烷单加氧酶的表达分析确定了两个氧化还原区中的一种活跃的I型甲烷营养型细菌。相比之下,氧化还原区域内的甲烷转换在两个盆地之间显示出很大的差异(GD:最大为0.12nMd〜(〜(?1)),LD:最大为0.61nMd〜(〜(?1)))), LD中甲烷的转换时间降低了近四倍(GD:455 d,LD:127 d)。根据甲烷浓度曲线和氧化还原带中甲烷的消耗量(GD:2.5×10〜(?6)m〜2 s〜(〜(?1)),LD,计算出两个深层的垂直混合速率。 :1.6×10〜(?5)m〜2 s〜(〜(?1))))。我们的研究确定了甲烷从深水体向氧化还原带的垂直运移以及这些深层氧化还原带内不同的水文条件(横向侵入和垂直混合)是决定深层甲烷氧化的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号