...
首页> 外文期刊>Biogeochemistry >Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link
【24h】

Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link

机译:草原土壤中的长期氮肥和碳固存:微生物酶联系的证据

获取原文
获取原文并翻译 | 示例

摘要

Chronic nitrogen (N) fertilization can greatly affect soil carbon (C) sequestration by altering biochemical interactions between plant detritus and soil microbes. In lignin-rich forest soils, chronic N additions tend to increase soil C content partly by decreasing the activity of lignin-degrading enzymes. In cellulose-rich grassland soils it is not clear whether cellulose-degrading enzymes are also inhibited by N additions and what consequences this might have on changes in soil C content. Here we address whether chronic N fertilization has affected (1) the C content of light versus heavier soil fractions, and (2) the activity of four extracellular enzymes including the C-acquiring enzyme beta-1,4-glucosidase (BG; necessary for cellulose hydrolysis). We found that 19 years of chronic N-only addition to permanent grassland have significantly increased soil C sequestration in heavy but not in light soil density fractions, and this C accrual was associated with a significant increase (and not decrease) of BG activity. Chronic N fertilization may increase BG activity because greater N availability reduces root C:N ratios thus increasing microbial demand for C, which is met by C inputs from enhanced root C pools in N-only fertilized soils. However, BG activity and total root mass strongly decreased in high pH soils under the application of lime (i.e. CaCO3), which reduced the ability of these organo-mineral soils to gain more C per units of N added. Our study is the first to show a potential 'enzyme link' between (1) long-term additions of inorganic N to grassland soils, and (2) the greater C content of organo-mineral soil fractions. Our new hypothesis is that the 'enzyme link' occurs because (a) BG activity is stimulated by increased microbial C demand relative to N under chronic fertilization, and (b) increased BG activity causes more C from roots and from microbial metabolites to accumulate and stabilize into organo-mineral C fractions. We suggest that any combination of management practices that can influence the BG 'enzyme link' will have far reaching implications for long-term C sequestration in grassland soils.
机译:通过改变植物碎屑与土壤微生物之间的生化相互作用,长期施用氮肥可以极大地影响土壤碳的固存。在富含木质素的森林土壤中,长期添加氮往往会通过降低木质素降解酶的活性来部分增加土壤C的含量。在富含纤维素的草原土壤中,尚不清楚添加N的纤维素是否也能抑制降解纤维素的酶,以及其对土壤C含量变化的影响。在这里,我们探讨了长期施氮是否会影响(1)相对于较重土壤部分的轻度C含量,以及(2)包括C获得酶β-1,4-葡萄糖苷酶(BG;这是必需的)的四种细胞外酶的活性纤维素水解)。我们发现,在永久性草地上添加氮仅19年,在重度土壤密度中却显着增加了土壤固碳,但在轻度土壤密度中却没有,并且累积的C与BG活性显着增加(而不是降低)有关。长期施用氮肥可能会增加BG的活性,因为更多的氮素可利用会降低根系C:N的比例,从而增加了微生物对碳的需求,而氮素仅来自于改良过的根系碳库中的碳输入,便满足了这种需求。但是,在石灰(即CaCO3)的作用下,高pH值土壤中的BG活性和总根质量大大降低,这降低了这些有机矿物土壤每单位N添加量获得更多C的能力。我们的研究首次显示了(1)长期向草地土壤中添加无机氮与(2)有机矿物质土壤级分中C含量较高之间的潜在“酶联系”。我们的新假设是发生“酶联动”的原因是:(a)在长期施肥下,相对于氮,微生物碳需求的增加刺激了BG的活性;(b)BG活性的增加导致了根和微生物代谢产物中更多的C的积累和积累。稳定成有机矿物C馏分。我们建议,任何可能影响BG“酶链”的管理措施的组合,对于在草地土壤中长期固存C具有深远的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号