...
首页> 外文期刊>Geology of Ore Deposits: A Journal of Theoretical and Applied Papers on All Aspects of Ore Genesis >Isolating Properties of a Bentonite Buffer in Conditions of an Underground Repository for High-Level Radioactive Wastes
【24h】

Isolating Properties of a Bentonite Buffer in Conditions of an Underground Repository for High-Level Radioactive Wastes

机译:在高放废物地下储存库中膨润土缓冲液的隔离特性

获取原文
获取原文并翻译 | 示例
           

摘要

The use of a hentonite buffer as an engineered barrier is specified in many contemporary designs of deep-seated underground repositories for high-level radioactive wastes (HLW).Briquettes of compacted ben-tonite are placed between a canister with HLW and rock.The thickness of the bentonite buffer is from 0.3 to 1.3 m.The isolating properties of bentonite are manifested in its low water permeability,swelling,plasticity,high sorption capacity,and high montmorillonite content (more than 60%).When saturated with water,bentonite swells and seals fissures in host rocks.In order to provide maximal durability of canisters and minimal solubility of HLW,the composition of bentonites is specifically selected to ensure reducing low-alkaline properties of pore waters.Due to low water permeability,radionuclides can migrate through the buffer only by diffusion.If a canister ensures the isolation of radionuclides from groundwater for 1000 years,a bentonite buffer increases this term by at least one order of magnitude.Only poorly sorbed long-lived radionuclides (~(14)C,~(129)1,~(79)Se,~(135)Cs,and ~(99)Tc) can overcome a bentonite buffer,and only thousands of years after the failure of canisters.By the time of such failure,all short and midlived radionuclides (~(137)Cs and ~(90)Sr) will decay,and 98% of HLW radioactivity will be caused by actinides.The bentonite buffer is capable of retaining these most environmentally hazardous radionuclides for a virtually unlimited period.The transfer of radioisotopes in colloidal form through the buffer is completely excluded due to the very fine size of pores in bentonite and the lack of open channels.In underground repositories of vitrified HLW,~(79)Se and ~(135)Cs can overcome a bentonite buffer only after 10000 years,and ~(99)Tc,only after 300000 years.The isotope ~(135)Cs is the main contributor to contamination of the biosphere.In this case,the radiation dose received by a human will not exceed 10~(-3) of the dose obtained from background radiation.In repositories of spent nuclear fuel,~(14)C,~(36)C1,and ~(129)I,which are absent in vitrified HLW,will be the first to penetrate into groundwater through the bentonite buffer.However,their contribution to the radiation dose cannot exceed a few hundredth fractions of the background radiation.It would be reasonable to conclude that the use of this barrier allows us to ensure the reliable isolation of the most hazardous radionuclides (actinides) for the required period.The illitization of montmorillonite is the main process that can deteriorate the isolating properties of bentonite.The rate of this process depends on temperature and the potassium concentration in groundwater.The analysis of experimental and geological-geochemical data on the conditions of formation of clay minerals shows that,during the time when bentonite is undergoing the impact of a temperature up to 250 deg C,the amount of newly formed illite layers will be insignificant and will not influence the isolating properties of the buffer.This is all the more valid for the temperature of 100 deg C provided for in designs of underground HLW repositories in most countries.The isolating properties of bentonite could be considerably improved by introducing additives that decrease the solubility of HLW in pore water and improve bentonite sorption properties.The addition of iron filings or shavings increases the reducing capacity and heat conductivity of the buffer;the addition of vivianite decreases the solubility of HLW solidified into alumophosphate glass;and the addition of weathered basic rocks enriched with leucoxene and iron hydroxides improves sorption properties.The high technological and economic efficiency of the bentonite buffer allows us to consider this buffer as the main engineered barrier reliably ensuring the safety of underground HLW repositories.
机译:许多现代设计的高放射性废物(HLW)的深层地下储存库中均指定使用膨润土缓冲层作为工程屏障,将压缩膨润土的硬块放在具有HLW和岩石的罐之间。膨润土缓冲液的膨润度为0.3-1.3m。膨润土的隔离性表现为低透水性,溶胀,可塑性,高吸附能力,蒙脱土含量高(大于60%)。为了提供最大的碳罐耐久性和最小的HLW溶解度,膨润土的成分经过特别选择,以确保降低孔隙水的低碱性。由于低透水性,放射性核素可以通过如果一个滤罐能确保地下水中放射性核素的隔离长达1000年,则膨润土缓冲液会使这一术语至少增加一个或一个。只有吸附不良的长寿命放射性核素(〜(14)C,〜(129)1,〜(79)Se,〜(135)Cs和〜(99)Tc)才能克服膨润土缓冲液,并且罐失效后仅几千年。到这种失效之时,所有短寿命和中寿命的放射性核素(〜(137)Cs和〜(90)Sr)都会衰变,and光放射性将导致98%的HLW放射性。膨润土缓冲液能够在几乎无限的时间内保留这些对环境最有害的放射性核素,由于膨润土中孔隙的尺寸非常小且缺乏明渠,胶体形式的放射性同位素通过缓冲液的转移被完全排除了。陶瓷化的HLW,〜(79)Se和〜(135)Cs的储库仅在10000年后才能克服膨润土缓冲液,而〜(99)Tc仅在30万年后才能克服膨润土缓冲液。〜135Cs同位素是导致在这种情况下,人类接受的辐射剂量将不超过本底辐射剂量的10〜(-3)。在玻璃化的高放废物中不存在的乏核燃料库中,〜(14)C,〜(36)C1和〜(129)I将首先通过膨润土缓冲液渗透到地下水中。它们对辐射剂量的贡献不能超过背景辐射的百分之几。可以合理地得出结论,使用这种屏障可以使我们确保在所需时间内可靠隔离最危险的放射性核素(act系元素)。蒙脱石的未熟化是可能会破坏膨润土的隔离性能的主要过程,该过程的速率取决于温度和地下水中的钾浓度。对粘土矿物形成条件的实验和地质地球化学数据的分析表明: ,在膨润土经受最高250摄氏度的温度影响期间,新形成的伊利石层的数量微不足道,并且不会影响隔离在大多数国家地下HLW储存库设计中规定的100摄氏度温度下,这更有效。通过引入降低HLW在孔中溶解度的添加剂,可以大大改善膨润土的隔离性能。铁屑或刨花的加入会增加缓冲液的还原能力和导热性; Vivianite的加入会降低固化在铝磷酸盐玻璃中的HLW的溶解度;以及加入富含白二烯和膨润土缓冲液的高技术和经济效率使我们可以将这种缓冲液视为主要工程屏障,可可靠地确保地下HLW储存库的安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号