首页> 外文期刊>Geomicrobiology journal >Geochemical controls on microbial nitrate-dependent U(IV) oxidation
【24h】

Geochemical controls on microbial nitrate-dependent U(IV) oxidation

机译:微生物硝酸盐依赖性U(IV)氧化的地球化学控制

获取原文
获取原文并翻译 | 示例
           

摘要

After reductive immobilization of uranium, the element may be oxidized and remobilized in the presence of nitrate by the activity of dissimilatory nitrate-reducing bacteria. We examined controls on microbially mediated nitrate-dependent U(IV) oxidation in land-fill leachate-impacted subsurface sediments. Nitrate-dependent U(IV)-oxidizing bacteria were at least two orders of magnitude less numerous in these sediments than glucose- or Fe(II)-oxidizing nitrate-reducing bacteria and grew more slowly than the latter organisms, suggesting that U(IV) is ultimately oxidized by Fe(III) produced by nitrate-dependent Fe(II)-oxidizing bacteria or by oxidation of Fe(II) by nitrite that accumulates during organotrophic dissimilatory nitrate reduction. We examined the effect of nitrate and reductant concentration on nitrate-dependent U(IV) oxidation in sediment incubations and used the initial reductive capacity (RDC = [reducing equivalents] - [oxidizing equivalents]) of the incubations as a unified measurement of the nitrate or reductant concentration. When we lowered the RDC with progressively higher nitrate concentrations, we observed a corresponding increase in the extent of U(IV) oxidation, but did not observe this relationship between RDC and U(TV) oxidation rate, especially when RDC > 0, suggesting that nitrate concentration strongly controls the extent, but not the rate of nitrate-dependent U(IV) oxidation. On the other hand, when we raised the RDC in sediment incubations with progressively higher reductant (acetate, sulfide, soluble Fe(II), or FeS) concentrations, we observed progressively lower extents and rates of nitrate-dependent U(IV) oxidation. Acetate was a relatively poor inhibitor of nitrate-dependent U(IV) oxidation, while Fe(11) was the most effective inhibitor. Based on these results, we propose that it may be possible to predict the stability of U(IV) in a bioremediated aquifer based on the geochemical characteristics of that aquifer.
机译:在铀的还原固定化之后,该元素可以在硝酸盐存在下通过异化硝酸盐还原细菌的活性进行氧化和固定。我们检查了垃圾渗滤液影响的地下沉积物中微生物介导的硝酸盐依赖性U(IV)氧化的控制。在这些沉积物中,硝酸盐依赖性U(IV)氧化细菌的数量至少比葡萄糖或Fe(II)氧化硝酸盐还原细菌少两个数量级,并且生长速度比后者生物慢。 )最终被硝酸盐依赖性Fe(II)氧化细菌产生的Fe(III)氧化,或由有机营养异化硝酸盐还原过程中累积的亚硝酸盐氧化Fe(II)氧化。我们研究了硝酸盐和还原剂浓度对沉积物培养物中硝酸盐依赖性U(IV)氧化的影响,并使用了培养物的初始还原能力(RDC = [还原当量]-[氧化当量])作为硝酸盐的统一测量或还原剂浓度。当我们以逐渐升高的硝酸盐浓度降低RDC时,我们观察到U(IV)氧化程度相应增加,但没有观察到RDC与U(TV)氧化速率之间的这种关系,特别是当RDC> 0时,这表明硝酸盐浓度强烈控制着硝酸盐依赖的U(IV)氧化的程度,但没有控制速率。另一方面,当我们在沉淀物培养中使用逐渐升高的还原剂(乙酸盐,硫化物,可溶性Fe(II)或FeS)浓度提高RDC时,我们观察到硝酸盐依赖性U(IV)氧化的程度和速率逐渐降低。乙酸盐是相对弱的硝酸盐依赖性U(IV)氧化抑制剂,而Fe(11)是最有效的抑制剂。根据这些结果,我们建议,根据该含水层的地球化学特征,可以预测生物修复的含水层中U(IV)的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号