...
首页> 外文期刊>Geobiology >The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations
【24h】

The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations

机译:微需氧铁氧化微生物在产生带状铁结构中的作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Despite the historical and economic significance of banded iron formations (BIFs), we have yet to resolve the formation mechanisms. On modern Earth, neutrophilic microaerophilic Fe-oxidizing micro-organisms (FeOM) produce copious amounts of Fe oxyhydroxides, leading us to wonder whether similar organisms played a role in producing BIFs. To evaluate this, we review the current knowledge of modern microaerophilic FeOM in the context of BIF paleoenvironmental studies. In modern environments wherever Fe(II) and O-2 co-exist, microaerophilic FeOM proliferate. These organisms grow in a variety of environments, including the marine water column redoxcline, which is where BIF precursor minerals likely formed. FeOM can grow across a range of O-2 concentrations, measured as low as 2m to date, although lower concentrations have not been tested. While some extant FeOM can tolerate high O-2 concentrations, many FeOM appear to prefer and thrive at low O-2 concentrations (similar to 3-25m). These are similar to the estimated dissolved O-2 concentrations in the few hundred million years prior to the Great Oxidation Event' (GOE). We compare biotic and abiotic Fe oxidation kinetics in the presence of varying levels of O-2 and show that microaerophilic FeOM contribute substantially to Fe oxidation, at rates fast enough to account for BIF deposition. Based on this synthesis, we propose that microaerophilic FeOM were capable of playing a significant role in depositing the largest, most well-known BIFs associated with the GOE, as well as afterward when global O-2 levels increased.
机译:尽管带状铁形成物(BIF)具有历史和经济意义,但我们尚未解决其形成机理。在现代地球上,嗜中性的需氧微生铁氧化微生物(FeOM)产生大量的羟基氧化铁,这使我们想知道类似的生物体是否在产生BIF中起作用。为了对此进行评估,我们在BIF古环境研究的背景下回顾了现代微需氧FeOM的当前知识。在Fe(II)和O-2共存的现代环境中,微需氧的FeOM会扩散。这些生物在各种环境中生长,包括海水水柱氧化还原膜,这是可能形成BIF前体矿物的地方。 FeOM可以在一系列O-2浓度范围内生长,迄今测量的低至2m,尽管尚未测试较低的浓度。尽管一些现存的FeOM可以耐受高O-2浓度,但许多FeOM似乎更喜欢并在低O-2浓度(类似于3-25m)下壮成长。这些与“大氧化事件”(GOE)之前的几亿年中估计的溶解O-2浓度相似。我们比较了在不同水平的O-2存在下的生物和非生物Fe氧化动力学,结果表明,微需氧的FeOM以足够快的速度足以解释BIF沉积,从而对Fe氧化做出了重要贡献。基于此合成​​,我们建议微需氧性FeOM能够在沉积与GOE相关的最大,最知名的BIF时以及随后在全球O-2含量增加时起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号