...
首页> 外文期刊>Geobiology >Microbially enhanced dissolution of HgS in an acid mine drainage system in the California Coast Range.
【24h】

Microbially enhanced dissolution of HgS in an acid mine drainage system in the California Coast Range.

机译:在加利福尼亚海岸山脉的酸性矿山排水系统中,微生物增强了HgS的溶解。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mercury sulfides (cinnabar and metacinnabar) are the main ores of Hg and are relatively stable under oxic conditions (Ksp=10-54 and 10-52, respectively). However, until now their stability in the presence of micro-organisms inhabiting acid mine drainage (AMD) systems was unknown. We tested the effects of the AMD microbial community from the inoperative Hg mine at New Idria, CA, present in sediments of an AMD settling pond adjacent to the main waste pile and in a microbial biofilm on the surface of this pond, on the solubility of crystalline HgS. A 16 S rRNA gene clone library revealed that the AMD microbial community was dominated by Fe-oxidizing (orders Ferritrophicales and Gallionellas) and S-oxidizing bacteria (Thiomonas sp.), with smaller amounts (<=6%) being comprised of the orders Xanthomondales and Rhodospirillales. Though the order Ferritrophicales dominate the 16S rRNA clones (>60%), qPCR results of the microbial community indicate that the Thiomonas sp. represents~55% of the total micro-organisms in the top 1 cm of the AMD microbial community. Although supersaturated with respect to cinnabar and metacinnabar, microcosms inoculated with the AMD microbial community were capable of releasing significantly more Hg into solution compared to inactivated or abiotic controls. Four different Hg-containing materials were tested for bacterially enhanced HgS dissolution: pure cinnabar, pure metacinnabar, mine tailings, and calcine material (processed ore). In the microcosm with metacinnabar, the presence of the AMD microbial community resulted in an increase of dissolved Hg concentrations up to 500 micro g L-1 during the first 30 days of incubation. In abiotic control microcosms, dissolved Hg concentrations did not increase above 100 ng L-1. When Hg concentrations were below 50 micro g L-1, the Fe-oxidizing bacteria in the AMD microbial community were still capable of oxidizing Fe(II) to Fe(III) in the AMD solution, whereas concentrations above 50 micro g L-1 resulted in inhibition of microbial iron oxidation. Our experiments show that the AMD microbial community contributes to the dissolution of mercury sulfide minerals. These findings have major implications for risk assessment and future management of inoperative Hg mines worldwide.
机译:硫化汞(朱砂和后朱砂)是汞的主要矿石,在有氧条件下(K sp = 10 -54 和10 -52 )。然而,直到现在,它们在存在酸性矿山排水系统(AMD)的微生物存在下的稳定性仍是未知的。我们测试了加利福尼亚州新Idria停产的汞矿中的AMD微生物群落对邻近主要废物堆的AMD沉降池的沉积物中以及该池表面的微生物生物膜中的溶解度的影响。结晶的HgS。一个16 S rRNA基因克隆文库显示,AMD微生物群落主要由铁氧化(铁蛋白和金毛菌订单)和S氧化细菌(硫杆菌属)组成,数量较少(<= 6%)。 Xanthomondales和Rhodospirillales。尽管铁锈菌在16S rRNA克隆中占主导地位(> 60%),但微生物群落的qPCR结果表明,Thiomonas sp。在AMD微生物群落的前1厘米中约占总微生物的55%。尽管就朱砂和后朱砂而言,过饱和,但与灭活或非生物对照相比,接种AMD微生物群落的微观世界能够将更多的汞释放到溶液中。测试了四种不同的含Hg物质的细菌增强的HgS溶解度:纯朱砂,纯后朱砂,矿山尾矿和煅烧物质(加工矿石)。在具有前辰砂的缩影中,AMD微生物群落的存在导致在孵育的前30天中溶解的Hg浓度增加到500 micro g L -1 。在非生物对照微观世界中,高于100 ng L -1 时,溶解汞的浓度并未增加。当汞浓度低于50 micro g L -1 时,AMD微生物群落中的铁氧化细菌仍能够将AMD溶液中的Fe(II)氧化为Fe(III),而高于50 micro g L -1 会抑制微生物的铁氧化。我们的实验表明,AMD微生物群落有助于硫化汞矿物的溶解。这些发现对全球范围内停用的汞矿的风险评估和未来管理具有重大意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号