首页> 外文期刊>G.I.T. Laboratory Journal Europe >Membranes - Intrinsically a Nanotechnology: Potential Use of Different Kinds of Membranes
【24h】

Membranes - Intrinsically a Nanotechnology: Potential Use of Different Kinds of Membranes

机译:膜-本质上是一种纳米技术:不同种类膜的潜在用途

获取原文
获取原文并翻译 | 示例
       

摘要

Synthetic membrane based separations enable separating components differing in size from hundreds of nanometers to subnanometer scales. Achieving these separations requires the engineering of morphologies and modules while achieving a cost effective manufacturing process. The membrane field, which traces its beginning back over 150 years, has been forced to focus on nanostructures and their creation long before these topics became the popular buzzwords that they are now. Discoveries of material processing techniques have been as crucial as those of new material compositions in creating such engineered structures. Especially over the past 30 years, not only new materials and processing techniques, but also emerging applications of membranes have encouraged advancement in the state-of-the-art and promoted the vitality of this discipline. For example, the established areas of micro- and ultrafiltration are vigorously exploring new intellectual challenges in response to the bio-revolution, which demands increasingly sophisticated separation capabilities. Indeed, ultrafiltration membrane molecular weight cutoff values or nominal pore sizes are insufficient to control separation of similarly sized solutes. Adding knowledge of the types and amounts of charge on solutes as well as the morphology and charge on the membrane, however, is helping to enable extraordinarily selective hydrodynamic-based separations. Superimposing these factors on top of the persistent issues of fouling and concentration polarization presents a significant theoretical and practical challenge. These challenges are being addressed by innovations in modeling, materials and analytical techniques as well as device design and operational strategies. Such innovations benefit every type of membrane process, since fluid dynamics potentially affects all membrane applications, due to boundary layers and flow distribution effects - even those focused on micro-molecular separations.
机译:基于合成膜的分离可以分离大小从数百纳米到亚纳米级的组分。实现这些分离需要对形态和模块进行工程设计,同时实现具有成本效益的制造过程。膜领域的历史可以追溯到150年前,但在这些话题成为现在流行的流行语很久之前,就被迫专注于纳米结构及其创造。在创建这种工程结构时,材料加工技术的发现与新材料成分的发现一样重要。尤其是在过去的30年中,不仅新材料和加工技术,而且膜的新兴应用都鼓励了最新技术的发展,并促进了该学科的发展。例如,已建立的微滤和超滤领域正在积极探索新的智力挑战,以应对生物革命,而生物革命需要越来越复杂的分离能力。实际上,超滤膜的分子量截留值或标称孔径不足以控制大小相似的溶质的分离。然而,增加对溶质上电荷类型和数量以及膜上形态和电荷的了解,将有助于实现基于流体动力学的非凡选择性分离。在结垢和浓度极化的持续性问题之上叠加这些因素提出了重大的理论和实践挑战。这些挑战正在通过建模,材料和分析技术以及设备设计和操作策略方面的创新来解决。由于边界层和流动分布的影响,流体动力学潜在地影响了所有膜的应用,因此这些创新使每种类型的膜工艺都受益,即使那些集中在微分子分离方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号