...
首页> 外文期刊>Geobiology >Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?
【24h】

Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

机译:天冬氨酸外消旋作用是否限制了地下生物圈的深度极限?

获取原文
获取原文并翻译 | 示例
           

摘要

Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of similar to 89years for 1km depth and 27 degrees C and 1-2years for 3km depth and 54 degrees C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 degrees C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.RI Glavin, Daniel/D-6194-2012; Opperman, Diederik/F-5400-2012; Dworkin, Jason/C-9417-2012OI Dworkin, Jason/0000-0002-3961-8997
机译:根据地球化学模型,对地下生物圈的先前研究已经推论出数百到数千年的平均细胞倍增时间。我们已经基于细胞氨基酸的丰度,细胞天冬氨酸的D / L值和体内天冬氨酸消旋化率,直接限制了代谢活性微生物的原位平均细胞蛋白质更新或倍增时间。将该方法应用于从南非深部裂缝收集的浮游微生物群落中,产生最大细胞氨基酸周转时间的最接近时间是1km深度和27摄氏度为89年,3km深度和54摄氏度为1-2年。根据地球化学观点,比以前估计的细胞周转时间短得多。较高温度下的天冬氨酸外消旋速率产生的细胞蛋白质加倍时间与嗜热菌株的存活时间一致,并预测在85摄氏度的温度下,细胞必须每两天更换蛋白质以维持酶活性。如此高的维护要求可能是对深热的地下生物圈中生物的丰富度的主要限制,也是对其活动的潜在限制。生物样品中天冬氨酸D / L的测量是对深层,断裂的大陆和海洋地壳环境的潜在强大工具,在这些环境中,碳周转时间的地球化学模型受约束较弱。关于天冬氨酸在活嗜热菌和超嗜热菌中消旋速率的实验观察可以证明这一假设。然而,将需要开发对细胞壁肽和孢子的校正,以提高对环境样品的估算值的准确性。RIGlavin,Daniel / D-6194-2012; Opperman,Diederik / F-5400-2012;杰森·德沃金/ C-9417-2012OI杰森·德沃金/ 0000-0002-3961-8997

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号