...
首页> 外文期刊>Geobiology >Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils
【24h】

Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils

机译:生铁氧化物的形态学记录了微生物的生理和环境条件:解释铁微化石

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Despite the abundance of Fe and its significance in Earth history, there are no established robust biosignatures for Fe(II)-oxidizing micro-organisms. This limits our ability to piece together the history of Fe biogeochemical cycling and, in particular, to determine whether Fe(II)-oxidizers played a role in depositing ancient iron formations. A promising candidate for Fe(II)-oxidizer biosignatures is the distinctive morphology and texture of extracellular Fe(III)-oxyhydroxide stalks produced by mat-forming microaerophilic Fe(II)-oxidizing micro-organisms. To establish the stalk morphology as a biosignature, morphologic parameters must be quantified and linked to the microaerophilic Fe(II)-oxidizing metabolism and environmental conditions. Toward this end, we studied an extant model organism, the marine stalk-forming Fe(II)-oxidizing bacterium, Mariprofundus ferrooxydans PV-1. We grew cultures in flat glass microslide chambers, with FeS substrate, creating opposing oxygen/Fe(II) concentration gradients. We used solid-state voltammetric microelectrodes to measure chemical gradients in situ while using light microscopy to image microbial growth, motility, and mineral formation. In low-oxygen (2.7-28m) zones of redox gradients, the bacteria converge into a narrow (100m-1mm) growth band. As cells oxidize Fe(II), they deposit Fe(III)-oxyhydroxide stalks in this band; the stalks orient directionally, elongating toward higher oxygen concentrations. M.ferrooxydans stalks display a narrow range of widths and uniquely biogenic branching patterns, which result from cell division. Together with filament composition, these features (width, branching, and directional orientation) form a physical record unique to microaerophilic Fe(II)-oxidizer physiology; therefore, stalk morphology is a biosignature, as well as an indicator of local oxygen concentration at the time of formation. Observations of filamentous Fe(III)-oxyhydroxide microfossils from a similar to 170Ma marine Fe-Si hydrothermal deposit show that these morphological characteristics can be preserved in the microfossil record. This study demonstrates the potential of morphological biosignatures to reveal microbiology and environmental chemistry associated with geologic iron formation depositional processes.RI Luther, III, George/A-6384-2008OI Luther, III, George/0000-0002-0780-885X
机译:尽管有丰富的铁及其在地球历史中的意义,但尚没有针对氧化Fe(II)的微生物建立可靠的生物特征。这限制了我们整理铁生物地球化学循环历史的能力,尤其是确定铁(II)氧化剂是否在沉积古代铁层中发挥作用的能力受到限制。 Fe(II)-氧化剂生物签名的一个有前途的候选人是通过垫形成微需氧的Fe(II)-氧化微生物产生的细胞外Fe(III)-羟基氧化物茎的独特形态和质地。要将茎的形态建立为生物特征,必须对形态参数进行量化,并将其与微需氧的Fe(II)氧化代谢和环境条件相关联。为此,我们研究了一种现存的模型生物,即形成海藻的Fe(II)氧化细菌,Mariprofundus ferrooxydans PV-1。我们在带有FeS基质的平板玻璃微腔室内培养培养物,产生相反的氧/ Fe(II)浓度梯度。我们使用固态伏安法微电极测量原位化学梯度,同时使用光学显微镜对微生物的生长,运动性和矿物质形成进行成像。在氧化还原梯度低氧(2.7-28m)的区域中,细菌会聚成一条狭窄的(100m-1mm)生长带。当细胞氧化Fe(II)时,它们会在该带中沉积Fe(III)-羟基氧化物茎。茎定向定向,向较高的氧气浓度延伸。铁氧化担子茎具有较窄的宽度范围和独特的生源分支模式,这是由细胞分裂引起的。这些特征(长丝,宽度,分支和方向取向)与细丝成分一起形成了微需氧的Fe(II)-氧化剂生理学所特有的物理记录。因此,茎的形态是生物特征,也是形成时局部氧浓度的指标。对类似于170Ma海洋Fe-Si水热矿床的丝状Fe(III)-羟基氢氧化物微化石的观察表明,这些形态特征可以保留在微化石记录中。这项研究证明了形态生物特征揭示与地质铁形成沉积过程相关的微生物学和环境化学的潜力.RI Luther,III,George / A-6384-2008OI Luther,III,George / 0000-0002-0780-885X

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号