...
首页> 外文期刊>Geoderma: An International Journal of Soil Science >Strong pulse effects of precipitation events on soil microbial respiration in temperate forests
【24h】

Strong pulse effects of precipitation events on soil microbial respiration in temperate forests

机译:降水事件对温带森林土壤微生物呼吸的强烈脉冲效应

获取原文
获取原文并翻译 | 示例
           

摘要

Precipitation is a critical factor triggering soil biogeochemical processes in arid and semi-arid regions. In this study, we selected soils from two temperate forests-a mature natural forest and a degraded secondary forest in a semi-arid region. We investigated the pulse effects of simulated precipitation (to reach 55% soil water-holding capacity) on the soil microbial respiration rate (R-s). We performed high-intensity measurements (at 5-min intervals for 48 h) to determine the maximum value of R-s (RS-max), the time to reach RS-max ( RS-max), and the duration of the pulse effect (from the start to the end of 1/2R(s-max)). The responses of R-s to simulated precipitation were rapid and strong. Rs-max was significantly higher in degraded secondary forest (18.69 mu g C g soil(-1) h(-1)) than in mature natural forest (7.94 mu g C g soil(-1) h(-1)). In contrast, the duration of the pulse effect and RS-max, were significantly lower in degraded secondary forest than in mature natural forest Furthermore, the accumulative microbial respiration per gram of soil (AR(S-soc)) did not differ significantly between degraded secondary forest and mature natural forest, but the accumulative microbial respiration per gram of soil organic C (A(Rs-soc)) was significantly higher in degraded secondary forest than in mature natural forest. Soil microbial biomass, soil nutrient, and litter nitrogen content were strongly correlated with the duration of the pulse effect and TRs-max Soil physical structure, pH, and litter nitrogen content were strongly correlated with RS-max and AR(S-soc), Our results indicate that the responses of soil microbial respiration to simulated precipitation are rapid and strong and that microbial respiration rate per gram C can be used to precisely determine the precipitation pulse of different soil samples as well as the effects of changing precipitation patterns on soil C content under various scenarios of global climate change. (C) 2016 Elsevier B.V. All rights reserved.
机译:降水是引发干旱和半干旱地区土壤生物地球化学过程的关键因素。在这项研究中,我们从两个温带森林中选择了土壤-一个成熟的天然森林和一个半干旱地区的退化次生森林。我们调查了模拟降水(达到55%的土壤持水量)对土壤微生物呼吸速率(R-s)的脉冲效应。我们进行了高强度测量(每5分钟间隔48小时),以确定Rs的最大值(RS-max),达到RS-max的时间(RS-max)以及脉冲效应的持续时间(从1 / 2R(s-max)的起点到终点)。 R-s对模拟降水的响应迅速而强烈。退化次生林(18.69μg C g土壤(-1)h(-1))的Rs-max显着高于成熟天然林(7.94μg C g土壤(-1)h(-1))。相反,退化的次生林的脉冲效应持续时间和RS-max显着低于成熟的天然森林。此外,退化的次生林之间每克土壤的累积微生物呼吸(AR(S-soc))没有显着差异。次生林和成熟天然林,但退化次生林中每克土壤有机碳(A(Rs-soc))的累积微生物呼吸显着高于成熟天然林。土壤微生物量,土壤养分和凋落物氮含量与脉冲效应持续时间和TRs-max密切相关。土壤物理结构,pH和凋落物氮含量与RS-max和AR(S-soc)紧密相关,我们的结果表明,土壤微生物呼吸对模拟降水的响应是快速而强烈的,并且每克碳的微生物呼吸速率可用于精确确定不同土壤样品的降水脉动以及降水模式改变对土壤碳的影响。在各种全球气候变化情景下的内容。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号