...
首页> 外文期刊>Biochemistry >Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1
【24h】

Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1

机译:保守的天冬酰胺对核糖核酸Sa,Ba和T1构象稳定性的贡献

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The contribution of hydrogen bonding by peptide groups to the conformational stability of globular proteins was studied. One of the conserved residues in the microbial ribonuclease (RNase) family is an asparagine at position 39 in RNase Sa, 44 in RNase T1, and 58 in RNase Ba (barnase). The amide group of this asparagine is buried and forms two similar intramolecular hydrogen bonds with a neighboring peptide group to anchor a loop on the surface of all three proteins. Thus, it is a good model for the hydrogen bonding of peptide groups. When the conserved asparagine is replaced with alanine, the decrease in the stability of the mutant proteins is 2.2 (Sa), 1.8 (T1), and 2.7 (Ba) kcal/mol. When the conserved asparagine is replaced by aspartate, the stability of the mutant proteins decreases by 1.5 and 1.8 kcal/mol for RNases Sa and T1, respectively, but increases by 0.5 kcal/mol for RNase Ba. When the conserved asparagine was replaced by serine, the stability of the mutant proteins was decreased by 2.3 and 1.7 kcal/mol for RNases Sa and T1, respectively. The structure of the Asn 39 double right arrow Ser mutant of RNase Sa was determined at 1.7 Angstrom resolution. There is a significant conformational change near the site of the mutation: (1) the side chain of Ser 39 is oriented differently than that of Bsn 39 and forms hydrogen bonds with two conserved water molecules; (2) the peptide bond of Ser 42 changes conformation in the mutant so that the side chain forms three new intramolecular hydrogen bonds with the backbone to replace three hydrogen bonds to water molecules present in the wild-type structure; and (3) the loss of the anchoring hydrogen bonds makes the surface loop more flexible in the mutant than it is in wild-type RNase Sa. The results show that burial and hydrogen bonding of the conserved asparagine make a large contribution to microbial RNase stability and emphasize the importance of structural information in interpreting stability studies of mutant proteins. [References: 77]
机译:研究了肽基团氢键对球形蛋白构象稳定性的影响。微生物核糖核酸酶(RNase)家族中一个保守的残基是在RNase Sa的39位,RNase T1的44位和RNase Ba(barnase)的58位的天冬酰胺。该天冬酰胺的酰胺基被掩埋并与相邻的肽基形成两个相似的分子内氢键,以将环锚定在所有三种蛋白质的表面上。因此,它是肽基团氢键的良好模型。当将保守的天冬酰胺替换为丙氨酸时,突变蛋白的稳定性下降为2.2(Sa),1.8(T1)和2.7(Ba)kcal / mol。当用天冬氨酸代替保守的天冬酰胺时,突变蛋白的稳定性对于RNase Sa和T1分别降低了1.5和1.8 kcal / mol,但对于RNase Ba则增加了0.5 kcal / mol。当保守的天冬酰胺被丝氨酸替代时,突变蛋白的稳定性对于RNase Sa和T1分别降低了2.3和1.7 kcal / mol。 RNase Sa的Asn 39双右箭头Ser突变体的结构在1.7埃分辨率下确定。在突变位点附近有一个显着的构象变化:(1)Ser 39的侧链与Bsn 39的侧链取向不同,并与两个保守的水分子形成氢键; (2)Ser 42的肽键改变了突变体的构象,使得侧链与主链形成三个新的分子内氢键,以取代野生型结构中存在的水分子的三个氢键; (3)锚定氢键的丢失使突变体中的表面环比野生型RNase Sa中的更具弹性。结果表明,保守的天冬酰胺的埋藏和氢键对微生物RNase的稳定性有很大贡献,并强调结构信息在解释突变蛋白稳定性研究中的重要性。 [参考:77]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号