...
首页> 外文期刊>Genetics: A Periodical Record of Investigations Bearing on Heredity and Variation >Nitrogen Starvation and TorC1 Inhibition Differentially Affect Nuclear Localization of the Gln3 and Gat1 Transcription Factors Through the Rare Glutamine tRNA(CUG) in Saccharomyces cerevisiae
【24h】

Nitrogen Starvation and TorC1 Inhibition Differentially Affect Nuclear Localization of the Gln3 and Gat1 Transcription Factors Through the Rare Glutamine tRNA(CUG) in Saccharomyces cerevisiae

机译:酿酒酵母中稀有谷氨酰胺tRNA(CUG)的氮饥饿和TorC1抑制差异影响Gln3和Gat1转录因子的核定位。

获取原文
获取原文并翻译 | 示例
           

摘要

A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2 Delta mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNA(CUG) requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2 Delta mutation, does not require tRNA(CUG) for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNA(CUG), which cannot be replaced by the predominant glutamine tRNA(CAA). Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation.
机译:亮氨酸,亮氨酰-tRNA合成酶依赖性途径可激活TorC1激酶及其下游刺激的蛋白质合成(氮的主要消耗者)。但是,我们先前证明,Gln3(一种分解代谢基因的转录激活剂)的控制不受亮氨酸依赖性TorC1激活的影响,Gln3的产物生成蛋白质合成的含氮前体。这导致我们得出结论,Gln3的过量氮依赖性下调是通过独立于亮氨酸依赖性TorC1激活的第二种机制发生的。 Gln3和Gat1(另一个GATA结合转录激活因子)控制的主要位点出现在它们进入细胞核的位置。在过量的氮中,Gln3和Gat1以Ure2依赖的方式被隔离在细胞质中。当氮变得有限时,它们变成核并激活转录。长期缺氮和用谷氨酰胺合成酶抑制剂甲硫氨酸亚砜亚胺(Msx)处理细胞也会引起Gln3核定位。 Gln3本地化对谷氨酰胺的敏感性和谷氨酰胺合成的抑制促使我们研究谷氨酰胺tRNA突变(sup70-65)对Gln3和Gat1的氮响应控制的影响。我们发现核Gln3定位是由短期和长期的氮饥饿引起的。在不良的,抑制性的培养基中生长; Msx或雷帕霉素治疗; sup70-65突变体消除了ure2或ure2 Delta突变。但是,核Gat1定位也表现出对短期氮饥饿或脯氨酸培养基中生长或ure2 Delta突变的反应具有谷氨酰胺tRNA(CUG)的要求,而对于t不需要雷帕霉素的反应就不需要tRNA(CUG)。此外,与Gln3相比,Gat1定位对长期的氮饥饿没有反应。这些观察结果表明存在参与控制Gln3和Gat1定位及其下游含氮前体的特定氮响应组分的存在。该成分对稀有的谷氨酰胺tRNA(CUG)的功能高度敏感,而后者不能被主要的谷氨酰胺tRNA(CAA)取代。我们的观察结果还表明,Gln3和Gat1对雷帕霉素抑制TorC1和氮饥饿的反应之间存在明显的机理差异。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号