...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting
【24h】

Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting

机译:堪察加半岛南部俯冲带火山前到后电弧区熔岩地球化学的剧烈变化:从平板表面脱水到沉积物融化的证据

获取原文
获取原文并翻译 | 示例
           

摘要

The shift of lava geochemistry between volcanic front to rear-arc volcanoes in active subduction zones is a widespread phenomenon. It is somehow linked to an increase of the slab surface depth of the subducting oceanic lithosphere and increasing thickness of the mantle wedge and new constraints for its causes may improve our understanding of magma generation and element recycling in subduction zones in general. As a case study, this paper focuses on the geochemical composition of lavas from two adjacent volcanic centres from the volcanic front (VF) to rear-arc (RA) transition of the Southern Kamchatkan subduction zone, with the aim to examine whether the shift in lava geochemistry is associated with processes in the mantle wedge or in the subducted oceanic lithosphere or both. The trace element and O-Sr-Nd-Hf-Pb (double-spike)-isotopic composition of the mafic Mutnovsky (VF) and Gorely (RA) lavas in conjunction with geochemical modelling provides constraints for the degree of partial melting in the mantle wedge and the nature of their slab components. Degrees of partial melting are inferred to be significantly higher beneath Mutnovsky (similar to 18%) than Gorely (similar to 10%). The Mutnovsky (VF) slab component is dominated by hydrous fluids, derived from subducted sediments and altered oceanic crust, eventually containing minor but variable amounts of sediment melts. The composition of the Gorely slab component strongly points to a hydrous silicate melt, most likely mainly stemming from subducted sediments, although additional fluid-contribution from the underlying altered oceanic crust (AOC) is likely. Moreover, the Hf-Nd-isotope data combined with geochemical modelling suggest progressive break-down of accessory zircon in the melting metasediments. Therefore, the drastic VF to RA shift in basalt chemistry mainly arises from the transition of the nature of the slab component (from hydrous fluid to melt) in conjunction with decreasing degrees of partial melting within similar to 15 km across-arc. Finally, systematic variations of key inter-element with high-precision Pb-isotope ratios provide geochemical evidence for a pollution of the Mutnovsky mantle source with Gorely melt components but not vice versa, most likely resulting from trench-ward mantle wedge corner flow. We also present a geodynamic model integrating the location of the Mutnovsky and Gorely volcanic centres and their lava geochemistry with the recently proposed thermal structure of the southern Kamchatkan arc and constraints about phase equilibria in subducted sediments and AOC. Herein, the slab surface hosting the subducted sediments suffers a transition from dehydration to melting above a continuously dehydrating layer of AOC. Wider implications of this study are that an onset of (flush-) sediment melting may ultimately be the main trigger for the VF to RA transition of lava geochemistry in subduction zones. (c) 2006 Elsevier Inc. All rights reserved.
机译:活跃俯冲带中熔岩地球化学在火山前火山到后弧火山之间的转移是一种普遍现象。总的来说,这与俯冲海洋岩石圈平板表面深度的增加和地幔楔厚度的增加有关,其成因的新限制可能会增进我们对俯冲带中岩浆生成和元素再循环的认识。作为案例研究,本文重点研究了南堪察加俯冲带的两个相邻火山中心(从火山前(VF)到后弧(RA)过渡)的熔岩的地球化学成分,目的是研究是否在该区域内发生了转变。熔岩地球化学与地幔楔或俯冲的海洋岩石圈或两者兼有的过程有关。镁铁质Mutnovsky(VF)和Gorely(RA)熔岩的痕量元素和O-Sr-Nd-Hf-Pb(双峰)-同位素组成与地球化学模型相结合,为地幔的部分熔融程度提供了限制楔块及其平板组件的性质。据推测,在Mutnovsky下,部分熔化的程度(大约18%)比Gorely(大约10%)高得多。 Mutnovsky(VF)板块成分主要由俯冲沉积物和蚀变的海洋地壳衍生出来的含水流体组成,最终含有少量但数量不等的沉积物熔体。戈利板坯成分的组成强烈指向含水的硅酸盐熔体,最有可能主要来自俯冲的沉积物,尽管可能由潜在的蚀变大洋地壳(AOC)引起额外的流体作用。此外,Hf-Nd同位素数据与地球化学模拟相结合,表明辅助锆石在融化的沉积物中逐渐分解。因此,玄武岩化学中剧烈的VF到RA的转变主要是由于板状组分的性质(从含水流体到熔融物)的转变以及部分熔融程度的降低(跨弧约15 km)而引起的。最后,关键元素之间的系统变化以及高精度的Pb-同位素比为地球化学证据提供了Gorely熔体成分污染Mutnovsky地幔源的方法,但反之则不然,这很可能是由向沟槽的地幔楔角流造成的。我们还提出了一个地球动力学模型,该模型将Mutnovsky和Gorely火山中心的位置及其熔岩地球化学与最近提议的Kamchatkan弧南部的热结构以及俯冲沉积物和AOC中的相平衡约束相结合。在此,在AOC的连续脱水层之上,容纳俯冲沉积物的平板表面经历了从脱水到熔融的转变。这项研究的广泛含义是,(冲)沉积物融化的发生可能最终是俯冲带熔岩地球化学从VF向RA过渡的主要触发因素。 (c)2006 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号