首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): A first-principles density functional theory study
【24h】

Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): A first-principles density functional theory study

机译:黄铁矿(FeS2),赤铁矿(Fe2O3)和菱铁矿(FeCO3)之间的铁同位素分馏:第一性原理密度泛函理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

In addition to equilibrium isotopic fractionation factors experimentally derived, theoretical predictions are needed forinterpreting isotopic compositions measured on natural samples because they allow exploring more easily a broader rangeof temperature and composition. For iron isotopes, only aqueous species were studied by first-principles methods and thecombination of these data with those obtained by different methods for minerals leads to discrepancies between theoreticaland experimental isotopic fractionation factors. In this paper, equilibrium iron isotope fractionation factors for the commonminerals pyrite, hematite, and siderite were determined as a function of temperature, using first-principles methods based onthe density functional theory (DFT). In these minerals belonging to the sulfide, oxide and carbonate class, iron is presentunder two different oxidation states and is involved in contrasted types of interatomic bonds. Equilibrium fractionation fac-tors calculated between hematite and siderite compare well with the one estimated from experimental data (In a57Fe/54Fe = 4.59 ± 0.30‰ and 5.46 ± 0.63‰ at 20 °C for theoretical and experimental data, respectively) while those forFe(III)aq-hematite and Fe(II)aq-siderite are significantly higher that experimental values. This suggests that the absolute valuesof the reduced partition functions (β-factors) of aqueous species are not accurate enough to be combined with those calculatedfor minerals. When compared to previous predictions derived from Mossbauer or INRXS data [Polyakov V. B., Clayton R.N., Horita J. and Mineev S. D. (2007) Equilibrium iron isotope fractionation factors of minerals: reevaluation from the dataof nuclear inelastic resonant X-ray scattering and Mossbauer spectroscopy. Geochim. Cosmochim. Acta 71, 3833-3846], ouriron /3-factors are in good agreement for siderite and hematite while a discrepancy is observed for pyrite. However, thedetailed investigation of the structural, electronic and vibrational properties of pyrite as well as the study of sulfur isotopefractionation between pyrite and two other sulfides (sphalerite and galena) indicate that DFT-derived β-factors of pyriteare as accurate as for hematite and siderite. We thus suggest that experimental vibrational density of states of pyrite shouldbe re-examined.
机译:除了实验得出的平衡同位素分馏因子外,还需要理论预测来解释在天然样品上测得的同位素组成,因为它们可以更轻松地探索更宽的温度和组成范围。对于铁同位素,仅通过第一性原理方法研究了水物种,这些数据与通过不同方法获得的矿物数据的结合导致理论和实验同位素分馏因子之间的差异。在本文中,基于密度泛函理论(DFT)的第一原理方法确定了普通矿物黄铁矿,赤铁矿和菱铁矿的平衡铁同位素分馏因子随温度的变化。在这些属于硫化物,氧化物和碳酸盐类的矿物中,铁以两种不同的氧化态存在,并参与对比类型的原子间键。在赤铁矿和菱铁矿之间计算出的平衡分馏因子与根据实验数据估算得出的平衡分馏因子进行了很好的比较(理论和实验数据在20°C下a57Fe / 54Fe分别为4.59±0.30‰和5.46±0.63‰),而对于Fe( III)aq-赤铁矿和Fe(II)aq-菱铁矿明显高于实验值。这表明,减少的水族物种分配函数(β因子)的绝对值不够准确,无法与为矿物计算的值相结合。与先前从Mossbauer或INRXS数据得出的预测进行比较时[Polyakov V. B.,Clayton R.N.,Horita J.和Mineev S.D.(2007)矿物的平衡铁同位素分馏因子:核非弹性共振X射线散射和Mossbauer光谱数据的重新评估。 Geochim。宇宙猫Acta 71,3833-3846],我们的铁/ 3因子与菱铁矿和赤铁矿非常吻合,而黄铁矿则存在差异。然而,对黄铁矿的结构,电子和振动性质的详细研究以及对黄铁矿与其他两种硫化物(方铅矿和方铅矿)之间硫同位素分馏的研究表明,DFT衍生的黄铁矿β因子与赤铁矿和菱铁矿一样准确。 。因此,我们建议应重新检查黄铁矿状态的实验振动密度。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号