首页> 外文期刊>Genetics: A Periodical Record of Investigations Bearing on Heredity and Variation >Regulation of Manganese Antioxidants by Nutrient Sensing Pathways in Saccharomyces cerevisiae
【24h】

Regulation of Manganese Antioxidants by Nutrient Sensing Pathways in Saccharomyces cerevisiae

机译:啤酒酵母中营养感应途径对锰抗氧化剂的调控

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In aerobic organisms, protection from oxidative damage involves the combined action of enzymatic and nonproteinaceous cellular factors that collectively remove harmful reactive oxygen species. One class of nonproteinaceous antioxidants includes small molecule complexes of manganese (Mn) that can scavenge superoxide anion radicals and provide a backup for superoxide dismutase enzymes. Such Mn antioxidants have been identified in diverse organisms; however, nothing regarding their physiology in the context of cellular adaptation to stress was known. Using a molecular genetic approach in Bakers' yeast, Saccharomyces cerevisiae, we report that the Mn antioxidants can fall under control of the same pathways used for nutrient sensing and stress responses. Specifically, a serine/threonine PAS-kinase, Rim15p, that is known to integrate phosphate, nitrogen, and carbon sensing, can also control Mn antioxidant activity in yeast. Rim15p is negatively regulated by the phosphate-sensing kinase complex Pho80p/Pho85p and by the nitrogen-sensing Akt/S6 kinase homolog, Sch9p. We observed that loss of either of these upstream kinase sensors dramatically inhibited the potency of Mn as an antioxidant. Downstream of Rim15p are transcription factors Gis1p and the redundant Msn2/Msn4p pair that typically respond to nutrient and stress signals. Both transcription factors were found to modulate the potency of the Mn antioxidant but in opposing fashions: loss of Gis1p was seen to enhance Mn antioxidant activity whereas loss of Msn2/4p greatly suppressed it. Our observed roles for nutrient and stress response kinases and transcription factors in regulating the Mn antioxidant underscore its physiological importance in aerobic fitness.
机译:在有氧生物中,防止氧化损伤涉及酶和非蛋白质细胞因子的共同作用,这些因素共同清除有害的活性氧。一类非蛋白质抗氧化剂包括锰(Mn)的小分子复合物,可以清除超氧阴离子自由基并为超氧化物歧化酶提供备用。这类锰抗氧化剂已在多种生物中得到鉴定。然而,在细胞适应压力的背景下,关于它们的生理学的知识还不清楚。我们使用贝克面包酵母中的一种分子遗传学方法,对酿酒酵母进行了报道,称锰抗氧化剂可以在营养物感应和应激反应的相同途径的控制之下。具体而言,已知整合了磷酸盐,氮和碳感测的丝氨酸/苏氨酸PAS激酶Rim15p也可以控制酵母中的Mn抗氧化活性。 Rim15p受到磷酸敏感激酶复合物Pho80p / Pho85p和氮敏感Akt / S6激酶同源物Sch9p的负调控。我们观察到,这些上游激酶传感器中的任何一个的丧失都显着抑制了Mn作为抗氧化剂的功效。 Rim15p的下游是转录因子Gis1p和冗余的Msn2 / Msn4p对,它们通常对营养和胁迫信号作出响应。发现这两个转录因子均能调节Mn抗氧化剂的效力,但以相反的方式:丢失Gis1p增强了Mn抗氧化剂的活性,而丢失Msn2 / 4p则大大抑制了它。我们观察到的营养和应激反应激酶以及转录因子在调节Mn抗氧化剂中的作用强调了其在有氧健身中的生理重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号