...
【24h】

A threshold in soil formation at Earth's arid-hyperarid transition

机译:地球干旱-高变转变的土壤形成阈值

获取原文
获取原文并翻译 | 示例

摘要

The soils of the Atacama Desert in northern Chile have long been known to contain large quantities of unusual salts, yet the processes that form these soils are not yet fully understood. We examined the morphology and geochemistry of soils on post-Miocene fans and stream terraces along a south-to-north (27 degrees to 24 degrees S) rainfall transect that spans the and to hyperarid transition (21 to -2 turn rain y(-1)). Landform ages are >= 2 My based on cosmogenic radionuclide concentrations in surface boulders, and Ar isotopes in interbedded volcanic ash deposits near the driest site indicate a maximum age of 2.1 My. A chemical mass balance analysis that explicitly accounts for atmospheric additions was used to quantify net changes in mass and volume as a function of rainfall. In the and (21 mm rainy-) soil, total mass loss to weathering of silicate alluvium and dust (- 1030 kg m(-2)) is offset by net addition of salts (+ 170 kg m(-2)). The most hyperarid soil has accumulated 830 kg m(-2) of atmospheric salts (including 260 kg sulfate m(-2) and 90 kg chloride m(-2)), resulting in unusually high volumetric expansion (120%) for a soil of this age. The composition of both airborne particles and atmospheric deposition in passive traps indicates that the geochernistry of the driest soil reflects accumulated atmospheric influxes coupled with limited in-soil chemical transformation and loss. Long-term rates of atmospheric solute addition were derived from the ion inventories in the driest soil, divided by the landform age, and compared to measured contemporary rates. With decreasing rainfall, the soil salt inventories increase, and the retained salts are both more soluble and present at shallower depths. All soils generally exhibit vertical variation in their chemistry, suggesting slow and stochastic downward water movement, and greater climate variability over the past 2 My than is reflected in recent (similar to 100 y) rainfall averages. The geochernistry of these soils shows that the transition from and to hyperarid rainfall levels marks a fundamental geochernical threshold: in wetter soils, the rate and character of chemical weathering results in net mass loss and associated volumetric collapse after 105 to 106 years, while continuous accumulation of atmospheric solutes in hyperarid soils over similar timescales results in dramatic volumetric expansion. The specific geochernistry of hyperarid soils is a function of atmospheric sources, and is expected to vary accordingly at other hyperarid sites. This work identifies key processes in hyperarid soil formation that are likely to be independent of location, and suggests that analogous processes may occur on Mars. (c) 2006 Elsevier Inc. All rights reserved.
机译:长期以来,智利北部阿塔卡马沙漠的土壤中都含有大量不同寻常的盐分,但形成这些土壤的过程尚未完全了解。我们研究了中新世后扇状带和沿南北向(27度至24度南)降雨断面的河道阶地上土壤的形态和地球化学,该降雨断面跨越和向高干旱过渡(21到-2转向雨y(- 1))。基于地表巨石中的宇宙成因放射性核素浓度,地貌年龄> = 2 My,而最干燥点附近的层间火山灰沉积物中的Ar同位素表明最大年龄为2.1 My。使用化学物质平衡分析明确说明了大气添加量,以量化质量和体积的净变化作为降雨的函数。在(21 mm雨水)和(21 mm雨水)土壤中,净添加盐分(+ 170 kg m(-2))可抵消因风化的硅酸盐冲积层和粉尘(-1030 kg m(-2))造成的总质量损失。最干旱的土壤累积了830 kg m(-2)的大气盐(包括260 kg硫酸盐m(-2)和90 kg氯化物m(-2)),导致土壤的体积膨胀异常高(120%)这个时代被动捕集阱中的空气传播颗粒和大气沉积物的成分表明,最干燥土壤的地质学反映了累积的大气涌入以及有限的土壤内化学转化和损失。大气中溶质的长期添加速率是根据最干燥土壤中的离子清单得出​​的,除以地貌年龄,然后与测得的当代速率进行比较。随着降雨的减少,土壤盐分存量增加,而保留的盐分更易溶且深度较浅。通常,所有土壤在化学上均表现出垂直变化,这表明水流缓慢而随机地向下移动,并且过去2 My的气候变化性要比最近(约100 y)的降雨平均值所反映的大。这些土壤的地质学表明,从高干旱水平到高干旱水平的过渡标志着一个基本的地质阈值:在潮湿的土壤中,化学风化的速率和特征导致净质量损失和105至106年后相关的体积塌陷,同时不断积累在相似的时间尺度内,高干旱土壤中的大气溶质含量急剧增加,导致体积膨胀。高干旱土壤的特定地质学是大气来源的函数,预计在其他高干旱地区也会发生相应变化。这项工作确定了高干旱土壤形成中可能与位置无关的关键过程,并表明类似的过程可能在火星上发生。 (c)2006 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号