...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle
【24h】

Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle

机译:下地幔最上层玄武质成分的亚固相和熔融相关系

获取原文
获取原文并翻译 | 示例

摘要

The phase relations and the element partitioning in a mid-oceanic ridge basalt composition were determined for both above-solidus and subsolidus conditions at 22 to 27.5 GPa by means of a multianvil apparatus. The mineral assemblage at the solidus changes remarkably with pressure; majorite and stishovite at 22 GPa, joined by Ca-perovskite at 23 GPa, further joined by CaAl4Si2O11-rich CAS phase at 25.5 GPa, and Mg-perovskite, stishovite, Ca-perovskite, CF phase (approximately on the join NaAlSiO4-MaAl(2)O(4)), and NAL phase ([Na,K,Ca](1)[Mg,Fe2+](2)[Al,Fe3+,Si](5.5-6.0)O-12) above 27 GPa. The liquidus phase is Ca-perovskite, and stishovite, a CAS phase, a NAL phase, Mg-perovskite, and a CF phase appear with decreasing temperature at 27.5 GPa. Partial melt at 27 to 27.5 GPa is significantly depleted in SiO2 and CaO and enriched in FeO and MgO compared with those formed at lower pressures, reflecting the narrow stability of (Fe,Mg)-rich phases (majorite or Mg-perovskite) above solidus temperature. The basaltic composition has a lower melting temperature than the peridotitic composition at high pressures except at 13 to 18 GPa (Yasuda et al., 1994) and therefore can preferentially melt in the Earth's interior. Recycled basaltic crusts were possibly included in hot Archean plumes, and they might have melted in the uppermost lower mantle. In this case, Ca-perovskite plays a dominant role in the trace element partitioning between melt and solid. This contrasts remarkably with the case of partial melting of a peridotitic composition in which magnesiowustite is the liquidus phase at this depth. Copyright (C) 2002 Elsevier Science Ltd. [References: 43]
机译:借助多砧装置,在22至27.5 GPa的固相线以上和固相线以下条件下,确定了中洋海脊玄武岩成分中的相关系和元素分配。固相线的矿物组合随压力而显着变化。 22 GPa的钙铝镁铁矿和钙钛矿,然后以23 GPa的钙钙钛矿加入,然后以25.5 GPa的富CaAl4Si2O11 CAS相以及镁钙钛矿,水银石,Ca-钙钛矿,CF相(大约在NaAlSiO4-MaAl的加入处)加入2)O(4))和NAL相([Na,K,Ca](1)[Mg,Fe2 +](2)[Al,Fe3 +,Si](5.5-6.0)O-12)高于27 GPa。液相线是钙钙钛矿,并且随着温度在27.5 GPa降低而出现水辉石,CAS相,NAL相,镁钙钛矿和CF相。与在较低压力下形成的熔体相比,在27至27.5 GPa处的部分熔体显着耗尽了SiO2和CaO,并富含FeO和MgO,反映出固相线以上的富(Fe,Mg)相(马氏体或镁钙钛矿)的窄稳定性。温度。高温下,玄武岩成分的熔融温度低于橄榄岩成分,熔融温度低于13至18 GPa(Yasuda等,1994),因此可以优先在地球内部融化。回收的玄武岩地壳可能包括在太古宙热烟柱中,并且可能已经融化在最下部的地幔中。在这种情况下,钙钛矿在熔体和固体之间的微量元素分配中起主要作用。这与部分熔化镁橄榄石为液相线相的橄榄石质组合物的情况形成鲜明对比。版权所有(C)2002 Elsevier Science Ltd. [参考:43]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号