...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Graphite-bearing CO2-fluid inclusions in granulites: Insights on graphite precipitation and carbon isotope evolution
【24h】

Graphite-bearing CO2-fluid inclusions in granulites: Insights on graphite precipitation and carbon isotope evolution

机译:花岗岩中含石墨的CO2流体包裹体:关于石墨沉淀和碳同位素演化的见解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Graphite in deep crustal enderbitic (orthopyroxene + garnet + plagioclase + quartz) granulites (740 degrees C, 8.9 kb) of Nilgiri hills, southern India were investigated for their spectroscopic and isotopic characteristics. Four types of graphite crystals were identified. The first type (Gr(I)), which is interstitial to other mineral grains, can be grouped into two subtypes, Gr(IA) and Gr(IB). Gr(IA) is either irregular in shape or deformed, and rough textured with average delta(13)C values of -12.7 +/- 0.4 parts per thousand (n = 3). A later generation of interstitial graphite (Gr(IB)) shows polygonal crystal shapes and highly reflecting smooth surface features. These graphite grains are more common and have delta(13)C values of -11.9 +/- 0.3 parts per thousand (n = 14). Both subtypes show well-defined Raman shifts suggesting a highly crystalline nature. Cores of interstitial graphite grains have, on average, lower delta(13)C values by similar to 0.5 parts per thousand compared to that of the rim. The second type of graphite (Gr(II)) occurs as solid inclusions in silicate minerals, commonly forming regular hexagonal crystals with a slightly disordered structure. The third type of graphite (Gr(III)) is associated with solid inclusions (up to 100 mu m) that have decrepitation halos of numerous small (< 15 mu m) satellite fluid inclusions of pure CO2 with varying density (1.105 to 0.75 g/cm(3)). The fourth type of graphite (Gr(IV)) is found as daughter crystals within primary type CO,fluid inclusions in garnet and quartz. These fluid inclusions have a range of densities (1.05 to 0.90 g/cm(3)), but in general are significantly less dense than graphite-free primary, pure CO2 fluid inclusions (1.12 g/cm(3)). Raman spectral characteristics of graphite inside fluid inclusions suggest graphite crystallization at low temperature (similar to 500 degrees C). The precipitation of graphite probably occurred during the isobaric cooling of CO2-rich peak metamorphic fluid as a result of oxyexsolution of oxide phases. The oxyexsolution process is evidenced by the magnetite-ilmenite granular exsolution textures and the systematic presence of numerous micron-sized rutile and other oxide inclusions in association with fluid inclusions within garnet, plagioclase, and quartz.The carbon isotope compositions of coexisting CO2 (in fluid inclusions) and graphite show a fractionation (alpha(CO2-gr)) of -6 parts per thousand in Garnet, consistent with the existing theoretical estimates of alpha(CO2-gr) at 800 degrees C. A subsequent generation of CO2 inclusions trapped in matrix quartz and quartz segregation have higher values, -4 parts per thousand and -2.9 parts per thousand respectively. Graphite in quartz segregations also has higher delta(13)C values (-9.8 parts per thousand) than those in enderbite (-12.7 parts per thousand). Micro-graphite crystals included in garnet, quartz (enderbite), and quartz (segregation) have average delta(13)C values of -11.1, -10.4, and -8.7 parts per thousand respectively, indicating progressive enrichment in C-13 with a decrease in temperature of recrystallization of respective minerals. This progressive enrichment is also observed in carbon isotope compositions of fluid inclusion CO2, suggesting isotopic equilibrium during Graphite precipitation from CO2 fluids. Thus, the carbon isotope record preserved in these rocks by the interstitial graphite, CO2 fluid in enderbite, graphite inicrocrystals, graphite in quartz segregation, and CO2 fluid in quartz segregation, suggests a temperature-controlled isotopic evolution. This evolution is in accordance with a closed system Rayleigh-type graphite precipitation process which progressively enriched residual CO2 in C-13. Copyright (c) 2005 Elsevier Ltd.
机译:研究了印度南部Nilgiri山地壳深部顽固性(邻苯二茂铁+石榴石+斜长石+石英)花岗岩(740摄氏度,8.9 kb)中的石墨的光谱学和同位素特征。鉴定出四种类型的石墨晶体。与其他矿物晶粒间质的第一种类型(Gr(I))可以分为两个子类型,即Gr(IA)和Gr(IB)。 Gr(IA)的形状不规则或变形,并且粗糙,其平均delta(13)C值为-12.7 +/- 0.4千分之一(n = 3)。间隙石墨(Gr(IB))的下一代显示出多边形晶体形状并高度反射光滑的表面特征。这些石墨晶粒更常见,其δ(13)C值为-11.9 +/- 0.3千分之一(n = 14)。两种亚型均显示出明确的拉曼位移,表明其具有高度结晶性。相较于轮辋,间隙石墨晶粒的核平均具有较低的delta(13)C值,约低0.5千分之几。第二种类型的石墨(Gr(II))作为固体包裹体存在于硅酸盐矿物中,通常形成规则的六边形晶体,其结构略有紊乱。第三类石墨(Gr(III))与固体夹杂物(最大100微米)相关,这些夹杂物具有许多小(<15微米)纯净二氧化碳浓度(1.105至0.75 g)的卫星流体夹杂物(小于15微米)的爆破光晕。 / cm(3))。发现第四种类型的石墨(Gr(IV))是初级类型CO中的子晶体,石榴石和石英中的流体夹杂物。这些流体夹杂物具有一定的密度范围(1.05至0.90 g / cm(3)),但总的来说,其密度明显低于不含石墨的初级,纯CO2流体夹杂物(1.12 g / cm(3))。流体包裹体内部石墨的拉曼光谱特性表明,石墨在低温(类似于500摄氏度)下会结晶。富集CO2的峰值变质流体在等压冷却过程中可能发生石墨沉淀,这是由于氧化物相的氧析出所致。磁铁矿-钛铁矿颗粒的析出织构以及大量微米级金红石和其他氧化物夹杂物与石榴石,斜长石和石英中的流体夹杂物一起系统存在,证明了氧解吸过程。夹杂物)和石墨在石榴石中的千分率(alpha(CO2-gr))为-6千分之一,与800°C时现有的α(CO2-gr)的理论估算值相符。基质石英和石英偏析值较高,分别为-4千分和-2.9千分。石英偏析中的石墨也比未咬合中的石墨具有更高的delta(13)C值(-9.8千分之一)(-12.7千分之一)。石榴石,石英(enderbite)和石英(偏析)中包含的微石墨晶体的平均delta(13)C值分别为-11.1,-10.4和-8.7千分之一,表明C-13中逐渐富集,且降低各个矿物的重结晶温度。在流体夹杂物CO 2的碳同位素组成中也观察到这种逐步富集,表明在从CO 2流体中析出石墨期间同位素平衡。因此,间质石墨、,石中的CO2流体,石墨细晶,石英偏析中的石墨和石英偏析中的CO2流体在这些岩石中保留的碳同位素记录表明,温度受控的同位素演化。这种演化与封闭系统瑞利型石墨沉淀过程一致,该过程逐渐富集了C-13中的残留CO2。版权所有(c)2005 Elsevier Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号