...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Low-pressure adsorption of Ar, Kr, and Xe on carbonaceous materials (kerogen and carbon blacks), ferrihydrite, and montmorillonite: Implications for the trapping of noble gases onto meteoritic matter
【24h】

Low-pressure adsorption of Ar, Kr, and Xe on carbonaceous materials (kerogen and carbon blacks), ferrihydrite, and montmorillonite: Implications for the trapping of noble gases onto meteoritic matter

机译:碳质材料(干酪根和炭黑),水铁矿和蒙脱石上的Ar,Kr和Xe的低压吸附:稀有气体在陨石上的捕获

获取原文
获取原文并翻译 | 示例
           

摘要

Noble gases trapped in meteorites are tightly bound in a carbonaceous carrier labeled "phase Q." Mechanisms having led to their retention in this phase or in its precursors are poorly understood. To test physical adsorption as a way of retaining noble gases into precursors of meteoritic materials, we have performed adsorption experiments for At, Kr, and Xe at low pressures (10(-4) mbar to 500 mbar) encompassing pressures proposed for the evolving solar nebula. Low-pressure adsorption isotherms were obtained for ferrihydrite and montmorillonite, both phases being present in Orgueil (CI), for terrestrial type III kerogen, the best chemical analog of phase Q studied so far, and for carbon blacks, which are present in phase Q and can be considered as possible precursors.Based on adsorption data obtained at low pressures relevant to the protosolar nebula, we propose that the amount of noble gases that can be adsorbed onto primitive materials is much higher than previously inferred from experiments carried out at higher pressures. The adsorption capacity increases from kerogen, carbon blacks, montmorillonite to ferrihydrite. Because of its low specific surface area, kerogen can hardly account for the noble gas inventory of Q. Carbon blacks in the temperature range 75 K-100 K can adsorb up to two orders of magnitude more noble gases than those found in Q. Irreversible trapping of a few percent of noble gases adsorbed on such materials could represent a viable process for incorporating noble gases in phase Q precursors. This temperature range cannot be ruled out for the zone of accretion of the meteorite precursors according to recent astrophysical models and observations, although it is near the lower end of the temperatures proposed for the evolving solar nebula. Copyright (c) 2005 Elsevier Ltd.
机译:捕获在陨石中的稀有气体紧密结合在标记为“ Q相”的碳质载体中。导致它们保留在该阶段或其前体中的机制了解甚少。为了测试物理吸附作为将稀有气体保留在陨石材料前体中的一种方式,我们在低压(10(-4)mbar至500 mbar)(包括针对不断发展的太阳能提出的压力)下进行了At,Kr和Xe的吸附实验星云。获得了铁水合物和蒙脱石的低压吸附等温线,这两个相都存在于Orgueil(CI)中,陆地III型干酪根,迄今为止研究的Q相的最佳化学类似物以及炭黑,它们都存在于Q相中根据在与原太阳能星云相关的低压下获得的吸附数据,我们建议可以吸附到原始材料上的稀有气体的数量要比先前在较高压力下进行的实验推断的数量高得多。 。吸附能力从干酪根,炭黑,蒙脱石到水铁矿均增加。由于其比表面积低,干酪根几乎不能解释Q的稀有气体。温度范围为75 K-100 K的炭黑比Q所吸附的惰性气体最多吸附两个数量级。不可逆捕集吸附在此类材料上的百分之几的稀有气体可能是将稀有气体掺入Q相前体的可行方法。根据最近的天体物理学模型和观测结果,不能排除该陨石前体积聚区域的温度范围,尽管该温度范围接近为不断发展的太阳星云提议的温度下限。版权所有(c)2005 Elsevier Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号