首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces
【24h】

Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

机译:生物膜涂层对金属氧化物/水界面I:Pb(II)和Zn(II)的分配和形态在Shewanella oneidensis /金属氧化物/水界面的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of alpha-Al2O3 and alpha-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) surfaces at low Pb concentration ([Pb] = 10(-7) M) and then increasingly partitions into the biofilm coatings at higher concentrations (10(-6) to 10(-4) M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10(-7) to 10(-4) M). In comparison, the alpha-Al2O3 (0001) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, alpha-Al2O3 (0001) is the least reactive surface for Pb(II) and Zn(II) compared to alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on alpha-Al2O3 (1-102) and alpha-Fe2O3 (0001) at [Me(II)] of 10(-7) M; at 10(-5) M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10(-5) M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb L-III-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be complexed by carboxyl groups in S. oneidensis biofilms after 3-h exposure at pH 6.0 and [Me(II)] = 10(-5) M. In contrast with Burkholderia cepacia, which was used in our previous studies of monolayer biofilm-coated metal-oxide surfaces (Templeton et al., 2001), S. oneidensis MR-1 forms relatively thick biofilm coatings (6-20 mu m) that are rich in reactive functional groups and are expected to dominate metal-ion adsorption. Our results show that even thick and highly reactive biofilms like S. oneidensis do not cause much change in the intrinsic chemical reactivities of the underlying metal-oxide surfaces with respect to aqueous Pb(II) and Zn(II) and don't block reactive sites on the metal-oxide surfaces; instead they reduce the rate of Pb(II) and Zn(II) sorption onto these surfaces. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在自然和工业环境中,微生物生物膜通常以金属氧化物表面的涂层形式存在,并且可能引起水性金属离子的分配行为和形态发生重大变化,进而影响其运输和命运。在这项研究中,使用长周期X射线驻波荧光产率(LP-XSW-FY)光谱法在原位条件下测量了多层Shewanella oneidensis MR-中Pb(II)和Zn(II)水溶液的分配。 1生物膜和高度抛光的α-Al2O3和α-Fe2O3定向单晶表面随pH值在6.0时金属离子浓度和时间的变化而变化。我们显示,在暴露3小时后,Pb(II)在低Pb浓度([Pb] = 10(-7)M)时优先结合到alpha-Al2O3(1-102)和alpha-Fe2O3(0001)表面然后逐渐以更高的浓度(10(-6)至10(-4)M)分配到生物膜涂层中。相反,在所有研究的锌浓度(10(-7)到10(-4)M)下,两个表面的Zn(II)优先分配到生物膜涂层中。相比之下,α-Al2O3(0001)表面对Pb(II)和Zn(II)均具有低亲和力,并且生物膜涂层是两种离子的主要吸收区。这些发现表明,在存在沙门氏菌生物膜涂层的情况下,与α-Al2O3(1-102)和α-Fe2O3(1-102)和α-Fe2O3(0001)相比,α-Al2O3(0001)是Pb(II)和Zn(II)的最小反应表面。 0001)。他们还表明,对于[Me(II)]为10(-7)M的α-Al2O3(1-102)和α-Fe2O3(0001)上的反应位点,Zn(II)的亲和力低于Pb(II)。 ;在10(-5)M时,大部分金属离子分配到生物膜涂层中。在更长的暴露时间(20-24小时)下,Pb(II)和Zn(II)都越来越多地分配到[Me(II)] = 10(-5)M和pH 6.0的金属氧化物表面,表明可能发生反应/扩散控制的吸附过程。 Pb L-III-边缘和Zn K-边缘掠入射扩展的X射线吸收精细结构(GI-EXAFS)测量表明,Pb(II)和Zn(II)离子都可能与拟南芥中的羧基络合在pH 6.0和[Me(II)] = 10(-5)M下暴露3 h后的生物膜。与洋葱伯克霍尔德菌相反,伯克霍尔德菌在我们以前的单层生物膜涂层金属氧化物表面研究中被使用(Templeton等人等(2001),S.oneidensis MR-1形成相对较厚的生物膜涂层(6-20μm),该涂层富含反应性官能团,并有望主导金属离子吸附。我们的结果表明,即使是厚的,高反应性的生物膜(如沙门氏菌)也不会引起底层金属氧化物表面相对于水溶液Pb(II)和Zn(II)的内在化学反应性发生很大变化,并且不会阻止反应性金属氧化物表面上的位点;相反,它们降低了Pb(II)和Zn(II)在这些表面上的吸附速率。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号