首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Hf-182-W-182 isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars
【24h】

Hf-182-W-182 isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars

机译:HF-182-W-182球粒陨石,真石和火星陨石的同位素系统:维斯塔和火星岩心形成和早期地幔分化的年代学

获取原文
获取原文并翻译 | 示例
           

摘要

The timescale of accretion and differentiation of asteroids and the terrestrial planets can be constrained using the extinct Hf-182-W-182 isotope system. We present new Hf-W data for seven carbonaceous chondrites, five eucrites, and three shergottites. The W isotope data for the carbonaceous chondrites agree with the previously revised W-182/W-184 of chondrites, and the combined chondrite data yield an improved epsilon(W) value for chondrites of -1.9 +/- 0.1 relative to the terrestrial standard. New Hf-W data for the eucrites, in combination with published results, indicate that mantle differentiation in the eucrite parent body (Vesta) occurred at 4563.2 +/- 1.4 Ma and suggest that core formation took place 0.9 +/- 0.3 Myr before mantle differentiation. Core formation in asteroids within the first similar to5 Myr of the solar system is consistent with the timescales deduced from W isotope data of iron meteorites. New W isotope data for the three basaltic shergottites EETA 79001, DaG 476, and SAU 051, in combination with published W-182 and Nd-142 data for Martian meteorites reveal the preservation of three early formed mantle reservoirs in Mars. One reservoir (Shergottite group), represented by Zagami, ALH77005, Shergotty, EETA 79001, and possibly SAU 05 1, is characterized by chondritic Nd-142 abundances and elevated epsilon(W) values of similar to0.4. The W-182 excess of this mantle reservoir results from core formation. Another mantle reservoir (NC group) is sampled by Nakhla, Lafayette, and Chassigny and shows coupled Nd-142-W-182 excesses of 0.5-1 and 2-3 epsilon units, respectively. Formation of this mantle reservoir occurred 10-20 Myr after CAI condensation. Since the end of core formation is constrained to 7-15 Myr, a time difference between early silicate mantle differentiation and core formation is not resolyable for Mars. A third early formed mantle reservoir (DaG group) is represented by DaG 476 (and possibly SAU 051) and shows elevated Nd-142/Nd-144 ratios of 0.5-0.7 epsilon units and epsilon(W) values that are indistinguishable from the Shergottite group. The time of separation of this third reservoir can be constrained to 50-150 Myr after the start of the solar system. Preservation of these early formed mantle reservoirs indicates limited convective mixing in the Martian mantle as early as similar to 15 Myr after CAI condensation and suggests that since this time no giant impact occur-red on Mars that could have led to mantle homogenization. Given that core formation in planetesimals was completed within the first similar to5 Myr of the solar system, it is most likely that Mars and Earth accreted from pre-differentiated planetesimals. The metal cores of Mars and Earth, however, cannot have formed by simply combining cores from these pre-differentiated planetesimals. The W-182/W-184 ratios of the Martian and terrestrial mantles require late effective removal of radiogenic W-182, strongly suggesting the existence of magma oceans on both planets. Large impacts were probably the main heat source that generated magma oceans and led to the formation metallic cores in the terrestrial planets. In contrast, decay of short-lived Al-26 and Fe-60 were important heat sources for melting and core formation in asteroids. Copyright (C) 2004 Elsevier Ltd.
机译:使用灭绝的Hf-182-W-182同位素系统,可以限制小行星和地球行星积聚和分化的时间尺度。我们提供了7个碳质球粒陨石,5个真碳质陨石和3个赤铁矿的新Hf-W数据。碳质球粒陨石的W同位素数据与先前修订的球粒陨石的W-182 / W-184一致,并且组合的球粒陨石数据相对于地面标准,球粒陨石的ε(W)值提高了-1.9 +/- 0.1 。新的银云母Hf-W数据与已发表的结果相结合,表明银云母母体(Vesta)的地幔分化发生在4563.2 +/- 1.4 Ma处,表明岩心形成在地幔前0.9 +/- 0.3 Myr差异化。太阳系的第一个类似于5 Myr的小行星中的核心形成与从铁陨石的W同位素数据推导出的时间尺度一致。三个玄武岩斜方岩EETA 79001,DaG 476和SAU 051的新W同位素数据,与已发布的火星陨石W-182和Nd-142数据相结合,揭示了火星中三个早期形成的地幔储层的保存。 Zagami,ALH77005,Shergotty,EETA 79001以及可能的SAU 05 1代表的一个储层(Shergottite组)的特征是软骨状Nd-142丰度和升高的epsilon(W)值接近0.4。 W-182过量的地幔储层是由于岩心形成。另一个地幔储层(NC组)由Nakhla,Lafayette和Chassigny采样,分别显示耦合Nd-142-W-182过量0.5-1和2-3ε单位。 CAI凝结后10-20 Myr形成了该地幔储层。由于岩心形成的末期限制为7-15 Myr,因此对于火星而言,早期硅酸盐幔幔分化和岩心形成之间的时间差是不可确定的。第三个早期形成的地幔储层(DaG组)由DaG 476(可能还有SAU 051)代表,并且显示Nd-142 / Nd-144比值升高,为0.5-0.7ε单位,ε(W)值与Shergottite不能区别组。太阳系启动后,可以将第三个储层的分离时间限制为50-150 Myr。这些早期形成的地幔储层的保存表明,早在CAI凝结后类似于15 Myr的火星地幔中的对流混合有限,这表明自那时以来,没有发生对火星的巨大撞击-红色可能导致地幔均化。假设小行星的核心形成是在太阳系的第一个类似于5 Myr的时间内完成的,那么火星和地球很可能从预分化的小行星中吸积了。然而,火星和地球的金属核不可能仅仅通过组合这些预分化行星的核而形成。火星和地幔的W-182 / W-184比值要求后期有效去除放射源性W-182,这强烈暗示了两个行星上都存在岩浆海洋。巨大的撞击可能是产生岩浆海洋并导致地球行星形成金属核心的主要热源。相反,短命的Al-26和Fe-60的衰变是小行星融化和形成核的重要热源。版权所有(C)2004 Elsevier Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号