...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Theoretical study on the reactivity of sulfate species with hydrocarbons
【24h】

Theoretical study on the reactivity of sulfate species with hydrocarbons

机译:硫酸盐类与烃类反应性的理论研究

获取原文
获取原文并翻译 | 示例

摘要

The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42- are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42- is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions (HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42-. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels used in the laboratory, with most of the dissolved sulfate occurring as SO42-, aqueous calcium sulfate ([CaSO4]((aq))), and aqueous magnesium sulfate ([MgSO4]((aq))). Our calculations indicate that TSR reactions that occur in natural environments are most likely to involve bisulfate ions (HSO4-) and/or magnesium sulfate contact ion-pairs ([MgSO4](CIP)) rather than 'free' sulfate ions (SO42-) or solvated sulfate ion-pairs, and that water chemistry likely plays a significant role in controlling the rate of TSR. (C) 2008 Elsevier Ltd. All rights reserved.
机译:非生物的,热化学控制的硫酸盐还原为硫化氢以及碳氢化合物的氧化,被称为热化学硫酸盐还原(TSR),是影响自然界石油积累的重要改变过程。尽管TSR通常在高温碳酸盐储层中观察到,但已证明很难在类似于自然条件下的实验室中进行模拟。本研究旨在评估各种硫酸盐物种的相对反应性,以提供对TSR机理的更深入了解,并有可能填补实验室实验数据与地质观测之间的空白。因此,量子力学密度泛函理论(DFT)用于确定涉及简单烃和不同硫酸盐物种的各种水性体系达到潜在过渡态所需的活化能。导致硫酸盐还原为硫化物的整个反应过程过于复杂,无法完全建模。因此,我们研究了限速步骤,即将硫酸盐S(VI)还原为亚硫酸盐S(IV)。研究结果表明,由于其对称的分子结构和球形电子分布,水溶硫酸根阴离子SO42-非常稳定。因此,在没有催化的情况下,预计SO42-的反应性极低。然而,硫酸盐的质子化形成硫酸氢根阴离子(HSO 4-)和金属硫酸盐接触离子对的形成都可以有效地破坏硫酸盐分子的结构,从而使其更具反应性。 TSR实验模拟的先前报告通常涉及使用酸性溶液,该溶液相对于SO42-含有较高浓度的HSO4-。但是,在石油储层中通常遇到的地层水中,HSO4-的浓度很可能明显低于实验室使用的浓度,大多数溶解的硫酸盐以SO42-,硫酸钙水溶液([CaSO4](( aq)))和硫酸镁水溶液([MgSO4]((aq)))。我们的计算表明,在自然环境中发生的TSR反应最有可能涉及硫酸氢根离子(HSO4-)和/或硫酸镁接触离子对([MgSO4](CIP)),而不是“游离”硫酸根离子(SO42-)或溶剂化的硫酸根离子对,并且水化学可能在控制TSR速率中起重要作用。 (C)2008 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号