首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Theoretical investigation of iron isotope fractionation between Fe(H2O)(3+)(6) and Fe(H2O)(2+)(6) : Implications for iron stable isotope geochemistry
【24h】

Theoretical investigation of iron isotope fractionation between Fe(H2O)(3+)(6) and Fe(H2O)(2+)(6) : Implications for iron stable isotope geochemistry

机译:Fe(H2O)(3 +)(6)和Fe(H2O)(2 +)(6)之间的铁同位素分馏的理论研究:对铁稳定同位素地球化学的意义

获取原文
获取原文并翻译 | 示例
       

摘要

The magnitude of equilibrium iron isotope fractionation between Fe(H2O)(6)(3+) and Fe(H2O)(6)(2+) calculated using density functional theory (DFT) and compared to prior theoretical and experimental results. DFr is a quantum chemical approach that permits a priori estimation of all vibrational modes and frequencies of these complexes and the effects of isotopic substitution. This information is used to calculate reduced partition function ratios of the complexes (10(3) (.) ln(p)), and hence, the equilibrium isotope fractionation factor (10(3) (.) In(a)). Solvent effects are considered using the polarization continuum model (PCM). DFT calculations predict fractionations of several per mil in Fe-56/Fe-54 favoring partitioning of heavy isotopes in the ferric complex. Quantitatively, 10(3 .) ln(a) predicted at 22degreesC, similar to3parts per thousand , agrees with experimental determinations but is roughly half the size predicted by prior theoretical results using the Modified Urey-Bradley Force Field (MUBFF) model. Similar comparisons are seen at other temperatures. MUBFF makes a number of simplifying assumptions about molecular geometry and requires as input IR spectroscopic data. The difference between DFT and MUBFF results is primarily due to the difference between the DFT-predicted frequency for the v(4) mode (O-Fe-O deformation) of Fe(H2O)(6)(3+) and spectroscopic determinations of this frequency used as input for MUBFF models (185-190 cm(-1) vs. 304 cm(-1), respectively). Hence, DFT-PCM estimates of 10(3) (.) In(p) for this complex are similar to20% smaller than MUBFF estimates. The DFT derived values can be used to refine predictions of equilibrium fractionation between ferric minerals and dissolved ferric iron, important for the interpretation of Fe isotope variations in ancient sediments. Our findings increase confidence in experimental determinations of the Fe(H2O)(6)(3+) - Fe(H2O)(6)(2+) fractionation factor and demonstrate the utility of DFT for applications in "heavy" stable isotope geochentistry. Copyright (C) 2005 Elsevier Ltd.
机译:Fe(H2O)(6)(3+)和Fe(H2O)(6)(2+)之间的平衡铁同位素分馏幅度采用密度泛函理论(DFT)计算,并与先前的理论和实验结果进行了比较。 DFr是一种量子化学方法,可以对这些络合物的所有振动模式和频率以及同位素取代的影响进行先验估计。此信息用于计算复合物(10(3)(。)ln(p))的减少的分区函数比率,因此可计算出平衡同位素分馏因子(10(3)(。)In(a))。使用极化连续体模型(PCM)考虑溶剂的影响。 DFT计算可预测Fe-56 / Fe-54中每密耳的分离几分之几,有利于铁络合物中重同位素的分配。定量地,在22摄氏度下预测的10(3。)ln(a),类似于千分之三,与实验结果相符,但大约是先前使用修正的Urey-Bradley力场(MUBFF)模型的理论结果所预测的大小的一半。在其他温度下可以看到类似的比较。 MUBFF对分子几何结构做出了许多简化的假设,并且需要作为输入IR光谱数据。 DFT和MUBFF结果之间的差异主要是由于Fe(H2O)(6)(3+)的v(4)模式(O-Fe-O形变)的DFT预测频率与光谱测定的差异该频率用作MUBFF模型的输入(分别为185-190 cm(-1)和304 cm(-1))。因此,此复合物的DFT-PCM估计值为10(3)(。)In(p),比MUBFF估计小20%。 DFT导出的值可用于完善铁矿物质和溶解的三价铁之间平衡分级的预测,这对于解释古代沉积物中的Fe同位素变化非常重要。我们的发现增加了对Fe(H2O)(6)(3+)-Fe(H2O)(6)(2+)分离因子进行实验测定的信心,并证明了DFT在“重”稳定同位素地球化学中的应用。版权所有(C)2005 Elsevier Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号