...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II)
【24h】

Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II)

机译:三氧化二铁的结构约束对异化铁还原和Fe(II)的结局

获取原文
获取原文并翻译 | 示例
           

摘要

Due to the strong reducing capacity of ferrous Fe, the fate of Fe(II) following dissimilatory iron reduction will have a profound bearing on biogeochemical cycles. We have previously observed the rapid and near complete conversion of 2-line ferrihydrite to goethite (minor phase) and magnetite (major phase) under advective flow in an organic carbon-rich artificial groundwater medium. Yet, in many mineralogically mature environments, well-ordered iron (hydr)oxide phases dominate and may therefore control the extent and rate of Fe(III) reduction. Accordingly, here we compare the reducing capacity and Fe(II) sequestration mechanisms of goethite and hematite to 2-line ferrihydrite under advective flow within a medium mimicking that of natural groundwater supplemented with organic carbon. Introduction of dissolved organic carbon upon flow initiation results in the onset of dissimilatory iron reduction of all three Fe phases (2-line ferrihydrite, goethite, and hematite). While the initial surface area normalized rates are similar (similar to10(-11) mol Fe(II) m(-2) g(-1)), the total amount of Fe(III) reduced over time along with the mechanisms and extent of Fe(II) sequestration differ among the three iron (hydr)oxide substrates. Following 16 d of reaction, the amount of Fe(III) reduced within the ferrihydrite, goethite, and hematite columns is 25, 5, and 1%, respectively. While 83% of the Fe(II) produced in the ferrihydrite system is retained within the solid-phase, merely 17% is retained within both the goethite and hematite columns. Magnetite precipitation is responsible for the majority of Fe(II) sequestration within ferrihydrite, yet magnetite was not detected in either the goethite or hematite systems. Instead, Fe(II) may be sequestered as localized spinel-like (magnetite) domains within surface hydrated layers (ca. 1 nm thick) on goethite and hematite or by electron delocalization within the bulk phase. The decreased solubility of goethite and hematite relative to ferrihydrite, resulting in lower Fe(III),, and bacterially-generated Fe(II)(aq) concentrations, may hinder magnetite precipitation beyond mere surface reorganization into nanometer-sized, spinel-like domains. Nevertheless, following an initial, more rapid reduction period, the three Fe (hydr)oxides support similar aqueous ferrous iron concentrations, bacterial populations, and microbial Fe(III) reduction rates. A decline in microbial reduction rates and further Fe(II) retention in the solid-phase correlates with the initial degree of phase disorder (high energy sites). As such, sustained microbial reduction of 2-line ferrihydrite, goethite, and hematite appears to be controlled, in large part, by changes in surface reactivity (energy), which is influenced by microbial reduction and secondary Fe(II) sequestration processes regardless of structural order (crystallinity) and surface area. Copyright (C) 2004 Elsevier Ltd.
机译:由于铁的强还原能力,异化铁还原后的Fe(II)命运将对生物地球化学循环产生深远影响。我们以前曾观察到,在富含有机碳的人造地下水介质中,在对流作用下,两线铁水铁矿快速且几乎完全转化为针铁矿(次相)和磁铁矿(主相)。但是,在许多矿物学上成熟的环境中,有序的氧化铁相占主导地位,因此可以控制Fe(III)还原的程度和速率。因此,在这里,我们模拟了在模拟天然地下水补充有机碳的介质中,在对流作用下针铁矿和赤铁矿对两线铁水铁矿的还原能力和Fe(II)螯合机理。在流动开始时引入溶解的有机碳会导致所有三个铁相(两线铁水铁矿,针铁矿和赤铁矿)的异化铁还原反应的开始。尽管初始表面积归一化速率相似(类似于10(-11)mol Fe(II)m(-2)g(-1)),但随着时间的流逝,Fe(III)的总量随着机理和程度而减少Fe(II)螯合的摩尔数在三种氧化铁(氢氧根)底物之间不同。反应16天后,在三水铁矿,针铁矿和赤铁矿柱中还原的Fe(III)量分别为25%,5%和1%。虽然在三水铁矿体系中产生的Fe(II)的83%保留在固相中,但针铁矿和赤铁矿柱中仅保留了17%。磁铁矿中的铁(II)螯合主要归因于磁铁矿沉淀,但针铁矿或赤铁矿系统均未检出磁铁矿。取而代之的是,Fe(II)可能被螯合在针铁矿和赤铁矿上的表面水合层(约1 nm厚)内的局部尖晶石状(磁铁矿)域中,或者通过体相中的电子离域而被隔离。针铁矿和赤铁矿相对于三水铁矿的溶解度降低,导致较低的Fe(III)和细菌生成的Fe(II)(aq)浓度,可能会阻碍磁铁矿的沉淀,而不仅仅是表面重组成纳米尺寸的尖晶石状畴。然而,经过最初的,更快的还原期后,三种Fe(氢氧根)氧化物支持相似的水溶液亚铁浓度,细菌种群和微生物Fe(III)还原速率。微生物还原率的下降以及固相中Fe(II)的进一步保留与相序的初始程度(高能位)相关。因此,两线铁水铁矿,针铁矿和赤铁矿的持续微生物还原似乎在很大程度上受表面反应性(能量)变化的控制,这受微生物还原和二次Fe(II)螯合过程的影响,无论结构顺序(结晶度)和表面积。版权所有(C)2004 Elsevier Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号