...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Efremovka 101.1: A CAI with ultrarefractory REE patterns and enormous enrichments of Se, Zr, and Y in Fassaite and Perovskite
【24h】

Efremovka 101.1: A CAI with ultrarefractory REE patterns and enormous enrichments of Se, Zr, and Y in Fassaite and Perovskite

机译:Efremovka 101.1:一种具有超难熔稀土元素模式且在Fassaite和钙钛矿中富集Se,Zr和Y的CAI

获取原文
获取原文并翻译 | 示例

摘要

Inclusion 101.1 from the CV3 carbonaceous chondrite Efremovka is a compact Type A Ca-Al-rich inclusion (CAI) highly enriched in ultrarefractory (UR) oxides. It is the first complete CAI with a UR rare earth element (REE) pattern found in a CV3 chondrite. The inclusion is petrographically complex and was formed in a multistage process. It consists of several lithologically unrelated units. The core contains abundant Y- and Zr-perovskite, Sc- and Zr-rich fassaite, and metallic FeNi enclosed in melilite. All mineral species (except spinel) in all lithological units exhibit the same basic UR REE pattern. Four different populations of perovskites are distinguished by different Y/Zr ratios. A few of the perovskites have Y/Zr ratios similar to those obtained from crystal/liquid fractionation experiments. Perovskites from the other three populations have either chondritic, lower than chondritic Y/Zr ratios or extremely low Zr contents. Ca isotopic ratios differ among three perovskites from different populations, demonstrating a variety of sources and formational processes. Most fassaites crystallized in situ through reaction between the CAI liquid and preexisting perovskites. This process induced redistribution of Zr, Y, Sc, and V between perovskite and fassaite, thus overprinting the original abundances in perovskite. Fassaite reaction rims around FeNi metals are also encountered. They are enriched in V, which was gained from the metal through oxidation of V in metal during fassaite crystallization. The relative abundances of Zr, Y, and Sc in perovskites are complementary to the abundances of these elements in Sc- and Zr-fassaite, indicating subsolidus partitioning of these elements between the two phases. Perovskites are enriched in Y and depleted in Sc and Zr in comparison to fassaites. The core contains two complete captured CAIs. several sinuous fragments, and fine-grained polygonal refractory fragments. An assemblage of andradite-wollastonite-hedenbergite and pure metallic iron is encountered as enclaves in the interior of some sinuous fragments. Metallic Fe and wollastonite formed by reduction of preexisting andradite and hedenbergite nebular alteration products upon inclusion in the highly reduced CAI melt. Numerous spinel clusters and framboids with varying V2O3 and Cr2O3 concentrations are enclosed in individual melilite crystals in the host CAI and captured CAIs. The rim sequence of the host consists of six layers (from the inside outward): (a) FeO-poor spinel, (b) Sc-bearing fassaite, (c) Al-diopside, (d) Al- and Ca-bearing olivine, (e) pure diopside, and (f) Ca-poor olivine. Like the constituents of the CAI core, all mineral layers of the rim sequence, except spinel, have the same UR REE pattern. However, the total REE abundances decrease systematically by 1 order of magnitude from layer 2 to layer 6. This feature strongly suggests formation of the rim sequence by successive condensation from a unique reservoir enriched in UR elements and excludes formation by flash heating. Petrography, mineral chemistry, REE, refractory lithophile element abundances, and Ca isotopic compositions demonstrate the complex multistage formation history of a CAI that on the surface looks like a regular Type A inclusion. Copyright (C) 2002 Elsevier Science Ltd. [References: 63]
机译:来自CV3碳质球粒陨石Efremovka的夹杂物101.1是紧凑的A型富含Ca-Al的夹杂物(CAI),高度富含超难熔(UR)氧化物。这是在CV3球粒陨石中发现的第一个具有UR稀土元素(REE)模式的完整CAI。包裹体在岩石学上是复杂的,并且是在多阶段过程中形成的。它由几个与岩性无关的单元组成。岩心包含丰富的Y和Zr钙钛矿,富Sc和Zr的钙铁矿,以及金属铁镍矿,均包裹在硅沸石中。所有岩性单元中的所有矿物种类(尖晶石除外)均显示相同的基本UR REE模式。四种不同的钙钛矿种群以不同的Y / Zr比来区分。某些钙钛矿的Y / Zr比与从晶体/液体分馏实验获得的钙钛矿相似。来自其他三个种群的钙钛矿要么呈软骨状,要么低于软骨状Y / Zr比率,要么具有极低的Zr含量。不同族群的三种钙钛矿之间的钙同位素比率不同,表明了各种来源和形成过程。大多数钙钛矿通过CAI液体和预先存在的钙钛矿之间的反应原位结晶。该过程引起钙钛矿和方铁矿之间Zr,Y,Sc和V的重新分布,从而覆盖了钙钛矿中原始的丰度。在FeNi金属周围也遇到了方铁石反应边缘。它们富含V,而V是通过玄武岩结晶过程中金属中V的氧化而从金属中获得的。钙钛矿中Zr,Y和Sc的相对丰度与Sc和Zr-钙铁矿中这些元素的丰度互补,表明这些元素在两相之间亚固相线分配。与钙钛矿相比,钙钛矿富含Y,而Sc和Zr却贫乏。核心包含两个完整的捕获的CAI。几个弯曲的碎片和细粒度的多边形耐火碎片。在一些弯曲碎片的内部,聚集着放射状的硅灰石,钙钛矿,钙铁矿和纯金属铁。通过在高度还原的CAI熔体中包含金属而生成的铁和硅灰石,它们是通过还原既有的,辐射的和菱锰矿的星状蚀变产物而形成的。具有不同V2O3和Cr2O3浓度的许多尖晶石簇和类黄烷被封闭在宿主CAI和捕获的CAI中的单个陨石晶体中。主体的边缘序列由六层组成(从内到外):(a)贫FeO的尖晶石,(b)含Sc的玄武岩,(c)透辉石,(d)含铝和钙的橄榄石,(e)纯透辉石和(f)钙贫橄榄石。像CAI岩心的成分一样,轮缘序列的所有矿物层(尖晶石除外)都具有相同的UR REE模式。但是,从第2层到第6层,总REE丰度系统地降低了1个数量级。该特征强烈暗示,通过从富含UR元素的独特储层中连续凝结而形成边缘序列,并排除了由闪蒸形成的现象。岩相学,矿物化学,稀土元素,难熔的嗜石元素元素丰度和Ca同位素组成证明了CAI的复杂多阶段形成历史,在表面上看起来像是规则的A型夹杂物。版权所有(C)2002 Elsevier Science Ltd. [参考:63]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号