...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200°C as a function of pH, total dissolved carbonate concentration, and chemical affinity
【24h】

An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200°C as a function of pH, total dissolved carbonate concentration, and chemical affinity

机译:在中性至碱性条件下以及150和200°C下菱镁矿溶解速率与pH值,总溶解碳酸盐浓度和化学亲和性的关系的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Steady-state magnesite dissolution rates were measured in mixed-flow reactors at 150 and 200°C and 4.6H<8.4, as a function of ionic strength (0.001M≤I≤1M), total dissolved carbonate concentration (10-4M<ΣCO_2<0.1M), and distance from equilibrium. Rates were found to increase with increasing ionic strength, but decrease with increasing temperature from 150 to 200°C, pH, and aqueous CO_3~(2-) activity. Measured rates were interpreted using the surface complexation model developed by Pokrovsky et al. (1999a) in conjunction with transition state theory (Eyring, 1935). Within this formalism, magnesite dissolution rates are found to be consistent with, where rd represents the BET surface area normalized dissolution rate, {>MgOH_2~+} stands for the concentration of hydrated magnesium centers on the magnesite surface, kMg designates a rate constant, A refers to the chemical affinity of the overall reaction, R denotes the gas constant, and T symbolizes absolute temperature. Within this model decreasing rates at far-from-equilibrium conditions (1) at constant pH with increasing temperature and (2) at constant temperature with increasing pH and ΣCO_2 stem from a corresponding decrease in {>MgOH_2~+}. This decrease in {>MgOH_2~+} results from the increasing stability of the >MgCO_(3-) and >MgOH° surface species with increasing temperature, pH and CO_3~(2-) activity. The decrease in constant pH dissolution rates yields negative apparent activation energies. This behavior makes magnesite resistant to re-dissolution if formed as part of mineral carbon sequestration efforts in deep geologic formations.
机译:在150和200°C和4.6 H <8.4的混合流反应器中测量稳态菱镁矿的溶解速率,该速率是离子强度(0.001M≤I≤1M),总溶解碳酸盐浓度(10-4M < ΣCO_2<0.1M),以及距平衡点的距离。发现速率随离子强度的增加而增加,但随温度从150升高至200°C,pH和含水CO_3〜(2-)活性而降低。使用Pokrovsky等人开发的表面络合模型解释了测得的速率。 (1999a)结合过渡状态理论(Eyring,1935)。在这种形式主义中,发现菱镁矿的溶解速率与一致,其中rd代表BET表面积归一化的溶解速率,{> MgOH_2〜+}代表菱镁矿表面上水合镁中心的浓度,kMg表示速率常数, A是指整个反应的化学亲和力,R是指气体常数,T是绝对温度。在该模型中,远离平衡的条件下的降低速率(1)在恒定的pH值下随温度升高而降低(2)在恒定的温度下随pH值升高和ΣCO_2的原因是{> MgOH_2〜+}相应降低。 {> MgOH_2〜+}的减少是由于> MgCO_(3-)和> MgOH°表面种类的稳定性随着温度,pH和CO_3〜(2-)活性的增加而增加的。恒定pH溶解速率的降低会产生负的表观活化能。如果作为深部地质构造中矿物碳固存工作的一部分而形成,则这种行为使菱镁矿具有抗再溶解的能力。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号