...
【24h】

Heat capacities of haplogranitic glasses and liquids

机译:触觉玻璃和液体的热容量

获取原文
获取原文并翻译 | 示例

摘要

The heat capacities of 27 glasses have been determined from room temperature to temperatures corresponding to supercooled liquid behavior. The investigated compositions are based on a haplogranite (near the 2-kbar pH(2)O minimum melt composition in the system NaAlSi3O8-KAlSi3O8-SiO2) to which alkali and alkaline earth oxides (Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, and BaO) have been added individually. Where comparison is possible, our data below the glass transition are consistent with predictive models previously proposed in the literature. In addition, the partial molar heat capacity of Li2O in silicate glasses is determined from our data. Extrapolated glassy and relaxed liquid enthalpies intersect at a temperature defined as the limiting fictive temperature (T-f'). At this temperature, the glassy heat capacity of all the studied compositions is close to the theoretical upper limit of 3R per gram-atom, where R is the gas constant. For samples cooled at 5 K/min, liquid viscosity of all samples is 10(12.56 +/-0.43) Pa s at T-f'. For other cooling rates, this result implies that log eta (T-f') = 11.5 - log Q, where eta (T-f') is the viscosity at the limiting fictive temperature and Q is the cooling rate (K/s). Liquid heat capacity is found to generally increase with addition of all oxides, although the details of the variations are obscured by the fact that experimental uncertainties are of a similar magnitude to variations in heat capacity caused by compositional change. On the other hand, the "configurational heat capacity" (C-p(conf)(T-f')), defined as the difference between the fully relaxed liquid heat capacity and the glassy heat capacity at the limiting fictive temperature, shows much less dispersion as a function of composition. Its variation is a nonlinear function of composition, with little, if any, change for additions of oxide less than 10 mol%, but increasing values for greater additions of oxides. By use of previously determined liquid expansivities, we calculate that volume changes account for similar to 15% of the configurational heat capacity. We conclude that liquid heat capacity should be considered as the sum of a vibrational contribution, of value close to 3R per gram-atom, and a configurational contribution related to liquid structure, rather than trying to define a single partial molar heat capacity for each liquid oxide component. Copyright (C) 2001 Elsevier Science Ltd. [References: 30]
机译:从室温到对应于过冷液体行为的温度,已经确定了27杯玻璃的热容。所研究的成分是基于白云母(NaAlSi3O8-KAlSi3O8-SiO2系统中的2kbar pH(2)O最低熔体成分附近),碱和碱土金属氧化物(Li2O,Na2O,K2O,Rb2O,Cs2O,MgO ,CaO,SrO和BaO)已分别添加。在可能进行比较的情况下,我们在玻璃化转变温度以下的数据与先前文献中提出的预测模型一致。此外,根据我们的数据确定了硅酸盐玻璃中Li2O的部分摩尔热容。外推的玻璃态焓和松弛的液体焓在定义为极限虚构温度(T-f')的温度下相交。在此温度下,所有研究过的组合物的玻璃态热容均接近于每克原子3R的理论上限,其中R为气体常数。对于以5 K / min冷却的样品,所有样品在T-f'时的液体粘度均为10(12.56 +/- 0.43)Pa s。对于其他冷却速率,此结果意味着log eta(T-f')= 11.5-log Q,其中eta(T-f')是极限虚拟温度下的粘度,Q是冷却速率(K / s) 。发现液体热容量通常随着所有氧化物的添加而增加,尽管由于实验不确定性与由成分变化引起的热容量变化具有相似的大小这一事实而使变化的细节被掩盖,但是液体的热容量通常会增加。另一方面,“构型热容”(Cp(conf)(T-f'))定义为极限虚构温度下完全松弛的液体热容和玻璃态热容之间的差,它的分散性要小得多。作为成分的函数。其变化是组成的非线性函数,如果添加的氧化物少于10 mol%,变化很小(如果有的话),但是如果添加更多的氧化物,则其值会增加。通过使用先前确定的液体膨胀率,我们计算出体积变化约占结构热容量的15%。我们得出结论,应该将液体热容视为振动贡献(值接近每克原子3R)和与液体结构有关的构型贡献的总和,而不是尝试为每种液体定义单个的部分摩尔热容。氧化物成分。版权所有(C)2001 Elsevier ScienceLtd。[参考:30]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号